Traktor/myenv/Lib/site-packages/sympy/functions/elementary/integers.py
2024-05-26 05:12:46 +02:00

626 lines
19 KiB
Python

from typing import Tuple as tTuple
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core import Add, S
from sympy.core.evalf import get_integer_part, PrecisionExhausted
from sympy.core.function import Function
from sympy.core.logic import fuzzy_or
from sympy.core.numbers import Integer
from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq
from sympy.core.symbol import Symbol
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import im, re
from sympy.multipledispatch import dispatch
###############################################################################
######################### FLOOR and CEILING FUNCTIONS #########################
###############################################################################
class RoundFunction(Function):
"""Abstract base class for rounding functions."""
args: tTuple[Expr]
@classmethod
def eval(cls, arg):
v = cls._eval_number(arg)
if v is not None:
return v
if arg.is_integer or arg.is_finite is False:
return arg
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
i = im(arg)
if not i.has(S.ImaginaryUnit):
return cls(i)*S.ImaginaryUnit
return cls(arg, evaluate=False)
# Integral, numerical, symbolic part
ipart = npart = spart = S.Zero
# Extract integral (or complex integral) terms
terms = Add.make_args(arg)
for t in terms:
if t.is_integer or (t.is_imaginary and im(t).is_integer):
ipart += t
elif t.has(Symbol):
spart += t
else:
npart += t
if not (npart or spart):
return ipart
# Evaluate npart numerically if independent of spart
if npart and (
not spart or
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
npart.is_imaginary and spart.is_real):
try:
r, i = get_integer_part(
npart, cls._dir, {}, return_ints=True)
ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
npart = S.Zero
except (PrecisionExhausted, NotImplementedError):
pass
spart += npart
if not spart:
return ipart
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
elif isinstance(spart, (floor, ceiling)):
return ipart + spart
else:
return ipart + cls(spart, evaluate=False)
@classmethod
def _eval_number(cls, arg):
raise NotImplementedError()
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_integer(self):
return self.args[0].is_real
class floor(RoundFunction):
"""
Floor is a univariate function which returns the largest integer
value not greater than its argument. This implementation
generalizes floor to complex numbers by taking the floor of the
real and imaginary parts separately.
Examples
========
>>> from sympy import floor, E, I, S, Float, Rational
>>> floor(17)
17
>>> floor(Rational(23, 10))
2
>>> floor(2*E)
5
>>> floor(-Float(0.567))
-1
>>> floor(-I/2)
-I
>>> floor(S(5)/2 + 5*I/2)
2 + 2*I
See Also
========
sympy.functions.elementary.integers.ceiling
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] https://mathworld.wolfram.com/FloorFunction.html
"""
_dir = -1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.floor()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[0]
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
arg0 = arg.subs(x, 0)
r = self.subs(x, 0)
if arg0 is S.NaN or isinstance(arg0, AccumBounds):
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
r = floor(arg0)
if arg0.is_finite:
if arg0 == r:
ndir = arg.dir(x, cdir=cdir)
return r - 1 if ndir.is_negative else r
else:
return r
return arg.as_leading_term(x, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
arg0 = arg.subs(x, 0)
r = self.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
r = floor(arg0)
if arg0.is_infinite:
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.series.order import Order
s = arg._eval_nseries(x, n, logx, cdir)
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(-1, 0)
return s + o
if arg0 == r:
ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
return r - 1 if ndir.is_negative else r
else:
return r
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_nonnegative(self):
return self.args[0].is_nonnegative
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return -ceiling(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg - frac(arg)
def __le__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] < other + 1
if other.is_number and other.is_real:
return self.args[0] < ceiling(other)
if self.args[0] == other and other.is_real:
return S.true
if other is S.Infinity and self.is_finite:
return S.true
return Le(self, other, evaluate=False)
def __ge__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] >= other
if other.is_number and other.is_real:
return self.args[0] >= ceiling(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Ge(self, other, evaluate=False)
def __gt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] >= other + 1
if other.is_number and other.is_real:
return self.args[0] >= ceiling(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Gt(self, other, evaluate=False)
def __lt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] < other
if other.is_number and other.is_real:
return self.args[0] < ceiling(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.Infinity and self.is_finite:
return S.true
return Lt(self, other, evaluate=False)
@dispatch(floor, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return is_eq(lhs.rewrite(ceiling), rhs) or \
is_eq(lhs.rewrite(frac),rhs)
class ceiling(RoundFunction):
"""
Ceiling is a univariate function which returns the smallest integer
value not less than its argument. This implementation
generalizes ceiling to complex numbers by taking the ceiling of the
real and imaginary parts separately.
Examples
========
>>> from sympy import ceiling, E, I, S, Float, Rational
>>> ceiling(17)
17
>>> ceiling(Rational(23, 10))
3
>>> ceiling(2*E)
6
>>> ceiling(-Float(0.567))
0
>>> ceiling(I/2)
I
>>> ceiling(S(5)/2 + 5*I/2)
3 + 3*I
See Also
========
sympy.functions.elementary.integers.floor
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] https://mathworld.wolfram.com/CeilingFunction.html
"""
_dir = 1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.ceiling()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[1]
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
arg0 = arg.subs(x, 0)
r = self.subs(x, 0)
if arg0 is S.NaN or isinstance(arg0, AccumBounds):
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
r = ceiling(arg0)
if arg0.is_finite:
if arg0 == r:
ndir = arg.dir(x, cdir=cdir)
return r if ndir.is_negative else r + 1
else:
return r
return arg.as_leading_term(x, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
arg0 = arg.subs(x, 0)
r = self.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
r = ceiling(arg0)
if arg0.is_infinite:
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.series.order import Order
s = arg._eval_nseries(x, n, logx, cdir)
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1)
return s + o
if arg0 == r:
ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
return r if ndir.is_negative else r + 1
else:
return r
def _eval_rewrite_as_floor(self, arg, **kwargs):
return -floor(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg + frac(-arg)
def _eval_is_positive(self):
return self.args[0].is_positive
def _eval_is_nonpositive(self):
return self.args[0].is_nonpositive
def __lt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] <= other - 1
if other.is_number and other.is_real:
return self.args[0] <= floor(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.Infinity and self.is_finite:
return S.true
return Lt(self, other, evaluate=False)
def __gt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] > other
if other.is_number and other.is_real:
return self.args[0] > floor(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Gt(self, other, evaluate=False)
def __ge__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] > other - 1
if other.is_number and other.is_real:
return self.args[0] > floor(other)
if self.args[0] == other and other.is_real:
return S.true
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Ge(self, other, evaluate=False)
def __le__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] <= other
if other.is_number and other.is_real:
return self.args[0] <= floor(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.Infinity and self.is_finite:
return S.true
return Le(self, other, evaluate=False)
@dispatch(ceiling, Basic) # type:ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs)
class frac(Function):
r"""Represents the fractional part of x
For real numbers it is defined [1]_ as
.. math::
x - \left\lfloor{x}\right\rfloor
Examples
========
>>> from sympy import Symbol, frac, Rational, floor, I
>>> frac(Rational(4, 3))
1/3
>>> frac(-Rational(4, 3))
2/3
returns zero for integer arguments
>>> n = Symbol('n', integer=True)
>>> frac(n)
0
rewrite as floor
>>> x = Symbol('x')
>>> frac(x).rewrite(floor)
x - floor(x)
for complex arguments
>>> r = Symbol('r', real=True)
>>> t = Symbol('t', real=True)
>>> frac(t + I*r)
I*frac(r) + frac(t)
See Also
========
sympy.functions.elementary.integers.floor
sympy.functions.elementary.integers.ceiling
References
===========
.. [1] https://en.wikipedia.org/wiki/Fractional_part
.. [2] https://mathworld.wolfram.com/FractionalPart.html
"""
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
def _eval(arg):
if arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(0, 1)
if arg.is_integer:
return S.Zero
if arg.is_number:
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
else:
return arg - floor(arg)
return cls(arg, evaluate=False)
terms = Add.make_args(arg)
real, imag = S.Zero, S.Zero
for t in terms:
# Two checks are needed for complex arguments
# see issue-7649 for details
if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
i = im(t)
if not i.has(S.ImaginaryUnit):
imag += i
else:
real += t
else:
real += t
real = _eval(real)
imag = _eval(imag)
return real + S.ImaginaryUnit*imag
def _eval_rewrite_as_floor(self, arg, **kwargs):
return arg - floor(arg)
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return arg + ceiling(-arg)
def _eval_is_finite(self):
return True
def _eval_is_real(self):
return self.args[0].is_extended_real
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_integer
def _eval_is_zero(self):
return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer])
def _eval_is_negative(self):
return False
def __ge__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other <= 0
if other.is_extended_nonpositive:
return S.true
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return not(res)
return Ge(self, other, evaluate=False)
def __gt__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other < 0
res = self._value_one_or_more(other)
if res is not None:
return not(res)
# Check if other >= 1
if other.is_extended_negative:
return S.true
return Gt(self, other, evaluate=False)
def __le__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other < 0
if other.is_extended_negative:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return res
return Le(self, other, evaluate=False)
def __lt__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other <= 0
if other.is_extended_nonpositive:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return res
return Lt(self, other, evaluate=False)
def _value_one_or_more(self, other):
if other.is_extended_real:
if other.is_number:
res = other >= 1
if res and not isinstance(res, Relational):
return S.true
if other.is_integer and other.is_positive:
return S.true
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
arg0 = arg.subs(x, 0)
r = self.subs(x, 0)
if arg0.is_finite:
if r.is_zero:
ndir = arg.dir(x, cdir=cdir)
if ndir.is_negative:
return S.One
return (arg - arg0).as_leading_term(x, logx=logx, cdir=cdir)
else:
return r
elif arg0 in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity):
return AccumBounds(0, 1)
return arg.as_leading_term(x, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.series.order import Order
arg = self.args[0]
arg0 = arg.subs(x, 0)
r = self.subs(x, 0)
if arg0.is_infinite:
from sympy.calculus.accumulationbounds import AccumBounds
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1) + Order(x**n, (x, 0))
return o
else:
res = (arg - arg0)._eval_nseries(x, n, logx=logx, cdir=cdir)
if r.is_zero:
ndir = arg.dir(x, cdir=cdir)
res += S.One if ndir.is_negative else S.Zero
else:
res += r
return res
@dispatch(frac, Basic) # type:ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if (lhs.rewrite(floor) == rhs) or \
(lhs.rewrite(ceiling) == rhs):
return True
# Check if other < 0
if rhs.is_extended_negative:
return False
# Check if other >= 1
res = lhs._value_one_or_more(rhs)
if res is not None:
return False