665 lines
19 KiB
Python
665 lines
19 KiB
Python
from sympy.core import S, diff
|
|
from sympy.core.function import Function, ArgumentIndexError
|
|
from sympy.core.logic import fuzzy_not
|
|
from sympy.core.relational import Eq, Ne
|
|
from sympy.functions.elementary.complexes import im, sign
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.polys.polyerrors import PolynomialError
|
|
from sympy.polys.polyroots import roots
|
|
from sympy.utilities.misc import filldedent
|
|
|
|
|
|
###############################################################################
|
|
################################ DELTA FUNCTION ###############################
|
|
###############################################################################
|
|
|
|
|
|
class DiracDelta(Function):
|
|
r"""
|
|
The DiracDelta function and its derivatives.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
DiracDelta is not an ordinary function. It can be rigorously defined either
|
|
as a distribution or as a measure.
|
|
|
|
DiracDelta only makes sense in definite integrals, and in particular,
|
|
integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``,
|
|
where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally,
|
|
DiracDelta acts in some ways like a function that is ``0`` everywhere except
|
|
at ``0``, but in many ways it also does not. It can often be useful to treat
|
|
DiracDelta in formal ways, building up and manipulating expressions with
|
|
delta functions (which may eventually be integrated), but care must be taken
|
|
to not treat it as a real function. SymPy's ``oo`` is similar. It only
|
|
truly makes sense formally in certain contexts (such as integration limits),
|
|
but SymPy allows its use everywhere, and it tries to be consistent with
|
|
operations on it (like ``1/oo``), but it is easy to get into trouble and get
|
|
wrong results if ``oo`` is treated too much like a number. Similarly, if
|
|
DiracDelta is treated too much like a function, it is easy to get wrong or
|
|
nonsensical results.
|
|
|
|
DiracDelta function has the following properties:
|
|
|
|
1) $\frac{d}{d x} \theta(x) = \delta(x)$
|
|
2) $\int_{-\infty}^\infty \delta(x - a)f(x)\, dx = f(a)$ and $\int_{a-
|
|
\epsilon}^{a+\epsilon} \delta(x - a)f(x)\, dx = f(a)$
|
|
3) $\delta(x) = 0$ for all $x \neq 0$
|
|
4) $\delta(g(x)) = \sum_i \frac{\delta(x - x_i)}{\|g'(x_i)\|}$ where $x_i$
|
|
are the roots of $g$
|
|
5) $\delta(-x) = \delta(x)$
|
|
|
|
Derivatives of ``k``-th order of DiracDelta have the following properties:
|
|
|
|
6) $\delta(x, k) = 0$ for all $x \neq 0$
|
|
7) $\delta(-x, k) = -\delta(x, k)$ for odd $k$
|
|
8) $\delta(-x, k) = \delta(x, k)$ for even $k$
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DiracDelta, diff, pi
|
|
>>> from sympy.abc import x, y
|
|
|
|
>>> DiracDelta(x)
|
|
DiracDelta(x)
|
|
>>> DiracDelta(1)
|
|
0
|
|
>>> DiracDelta(-1)
|
|
0
|
|
>>> DiracDelta(pi)
|
|
0
|
|
>>> DiracDelta(x - 4).subs(x, 4)
|
|
DiracDelta(0)
|
|
>>> diff(DiracDelta(x))
|
|
DiracDelta(x, 1)
|
|
>>> diff(DiracDelta(x - 1), x, 2)
|
|
DiracDelta(x - 1, 2)
|
|
>>> diff(DiracDelta(x**2 - 1), x, 2)
|
|
2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1))
|
|
>>> DiracDelta(3*x).is_simple(x)
|
|
True
|
|
>>> DiracDelta(x**2).is_simple(x)
|
|
False
|
|
>>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x)
|
|
DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y))
|
|
|
|
See Also
|
|
========
|
|
|
|
Heaviside
|
|
sympy.simplify.simplify.simplify, is_simple
|
|
sympy.functions.special.tensor_functions.KroneckerDelta
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/DeltaFunction.html
|
|
|
|
"""
|
|
|
|
is_real = True
|
|
|
|
def fdiff(self, argindex=1):
|
|
"""
|
|
Returns the first derivative of a DiracDelta Function.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the
|
|
user-level function and ``fdiff()`` is an object method. ``fdiff()`` is
|
|
a convenience method available in the ``Function`` class. It returns
|
|
the derivative of the function without considering the chain rule.
|
|
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn
|
|
calls ``fdiff()`` internally to compute the derivative of the function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DiracDelta, diff
|
|
>>> from sympy.abc import x
|
|
|
|
>>> DiracDelta(x).fdiff()
|
|
DiracDelta(x, 1)
|
|
|
|
>>> DiracDelta(x, 1).fdiff()
|
|
DiracDelta(x, 2)
|
|
|
|
>>> DiracDelta(x**2 - 1).fdiff()
|
|
DiracDelta(x**2 - 1, 1)
|
|
|
|
>>> diff(DiracDelta(x, 1)).fdiff()
|
|
DiracDelta(x, 3)
|
|
|
|
Parameters
|
|
==========
|
|
|
|
argindex : integer
|
|
degree of derivative
|
|
|
|
"""
|
|
if argindex == 1:
|
|
#I didn't know if there is a better way to handle default arguments
|
|
k = 0
|
|
if len(self.args) > 1:
|
|
k = self.args[1]
|
|
return self.func(self.args[0], k + 1)
|
|
else:
|
|
raise ArgumentIndexError(self, argindex)
|
|
|
|
@classmethod
|
|
def eval(cls, arg, k=S.Zero):
|
|
"""
|
|
Returns a simplified form or a value of DiracDelta depending on the
|
|
argument passed by the DiracDelta object.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The ``eval()`` method is automatically called when the ``DiracDelta``
|
|
class is about to be instantiated and it returns either some simplified
|
|
instance or the unevaluated instance depending on the argument passed.
|
|
In other words, ``eval()`` method is not needed to be called explicitly,
|
|
it is being called and evaluated once the object is called.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DiracDelta, S
|
|
>>> from sympy.abc import x
|
|
|
|
>>> DiracDelta(x)
|
|
DiracDelta(x)
|
|
|
|
>>> DiracDelta(-x, 1)
|
|
-DiracDelta(x, 1)
|
|
|
|
>>> DiracDelta(1)
|
|
0
|
|
|
|
>>> DiracDelta(5, 1)
|
|
0
|
|
|
|
>>> DiracDelta(0)
|
|
DiracDelta(0)
|
|
|
|
>>> DiracDelta(-1)
|
|
0
|
|
|
|
>>> DiracDelta(S.NaN)
|
|
nan
|
|
|
|
>>> DiracDelta(x - 100).subs(x, 5)
|
|
0
|
|
|
|
>>> DiracDelta(x - 100).subs(x, 100)
|
|
DiracDelta(0)
|
|
|
|
Parameters
|
|
==========
|
|
|
|
k : integer
|
|
order of derivative
|
|
|
|
arg : argument passed to DiracDelta
|
|
|
|
"""
|
|
if not k.is_Integer or k.is_negative:
|
|
raise ValueError("Error: the second argument of DiracDelta must be \
|
|
a non-negative integer, %s given instead." % (k,))
|
|
if arg is S.NaN:
|
|
return S.NaN
|
|
if arg.is_nonzero:
|
|
return S.Zero
|
|
if fuzzy_not(im(arg).is_zero):
|
|
raise ValueError(filldedent('''
|
|
Function defined only for Real Values.
|
|
Complex part: %s found in %s .''' % (
|
|
repr(im(arg)), repr(arg))))
|
|
c, nc = arg.args_cnc()
|
|
if c and c[0] is S.NegativeOne:
|
|
# keep this fast and simple instead of using
|
|
# could_extract_minus_sign
|
|
if k.is_odd:
|
|
return -cls(-arg, k)
|
|
elif k.is_even:
|
|
return cls(-arg, k) if k else cls(-arg)
|
|
elif k.is_zero:
|
|
return cls(arg, evaluate=False)
|
|
|
|
def _eval_expand_diracdelta(self, **hints):
|
|
"""
|
|
Compute a simplified representation of the function using
|
|
property number 4. Pass ``wrt`` as a hint to expand the expression
|
|
with respect to a particular variable.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``wrt`` is:
|
|
|
|
- a variable with respect to which a DiracDelta expression will
|
|
get expanded.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DiracDelta
|
|
>>> from sympy.abc import x, y
|
|
|
|
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=x)
|
|
DiracDelta(x)/Abs(y)
|
|
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=y)
|
|
DiracDelta(y)/Abs(x)
|
|
|
|
>>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x)
|
|
DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3
|
|
|
|
See Also
|
|
========
|
|
|
|
is_simple, Diracdelta
|
|
|
|
"""
|
|
wrt = hints.get('wrt', None)
|
|
if wrt is None:
|
|
free = self.free_symbols
|
|
if len(free) == 1:
|
|
wrt = free.pop()
|
|
else:
|
|
raise TypeError(filldedent('''
|
|
When there is more than 1 free symbol or variable in the expression,
|
|
the 'wrt' keyword is required as a hint to expand when using the
|
|
DiracDelta hint.'''))
|
|
|
|
if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ):
|
|
return self
|
|
try:
|
|
argroots = roots(self.args[0], wrt)
|
|
result = 0
|
|
valid = True
|
|
darg = abs(diff(self.args[0], wrt))
|
|
for r, m in argroots.items():
|
|
if r.is_real is not False and m == 1:
|
|
result += self.func(wrt - r)/darg.subs(wrt, r)
|
|
else:
|
|
# don't handle non-real and if m != 1 then
|
|
# a polynomial will have a zero in the derivative (darg)
|
|
# at r
|
|
valid = False
|
|
break
|
|
if valid:
|
|
return result
|
|
except PolynomialError:
|
|
pass
|
|
return self
|
|
|
|
def is_simple(self, x):
|
|
"""
|
|
Tells whether the argument(args[0]) of DiracDelta is a linear
|
|
expression in *x*.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DiracDelta, cos
|
|
>>> from sympy.abc import x, y
|
|
|
|
>>> DiracDelta(x*y).is_simple(x)
|
|
True
|
|
>>> DiracDelta(x*y).is_simple(y)
|
|
True
|
|
|
|
>>> DiracDelta(x**2 + x - 2).is_simple(x)
|
|
False
|
|
|
|
>>> DiracDelta(cos(x)).is_simple(x)
|
|
False
|
|
|
|
Parameters
|
|
==========
|
|
|
|
x : can be a symbol
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.simplify.simplify.simplify, DiracDelta
|
|
|
|
"""
|
|
p = self.args[0].as_poly(x)
|
|
if p:
|
|
return p.degree() == 1
|
|
return False
|
|
|
|
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
|
|
"""
|
|
Represents DiracDelta in a piecewise form.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DiracDelta, Piecewise, Symbol
|
|
>>> x = Symbol('x')
|
|
|
|
>>> DiracDelta(x).rewrite(Piecewise)
|
|
Piecewise((DiracDelta(0), Eq(x, 0)), (0, True))
|
|
|
|
>>> DiracDelta(x - 5).rewrite(Piecewise)
|
|
Piecewise((DiracDelta(0), Eq(x, 5)), (0, True))
|
|
|
|
>>> DiracDelta(x**2 - 5).rewrite(Piecewise)
|
|
Piecewise((DiracDelta(0), Eq(x**2, 5)), (0, True))
|
|
|
|
>>> DiracDelta(x - 5, 4).rewrite(Piecewise)
|
|
DiracDelta(x - 5, 4)
|
|
|
|
"""
|
|
if len(args) == 1:
|
|
return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True))
|
|
|
|
def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs):
|
|
"""
|
|
Returns the DiracDelta expression written in the form of Singularity
|
|
Functions.
|
|
|
|
"""
|
|
from sympy.solvers import solve
|
|
from sympy.functions.special.singularity_functions import SingularityFunction
|
|
if self == DiracDelta(0):
|
|
return SingularityFunction(0, 0, -1)
|
|
if self == DiracDelta(0, 1):
|
|
return SingularityFunction(0, 0, -2)
|
|
free = self.free_symbols
|
|
if len(free) == 1:
|
|
x = (free.pop())
|
|
if len(args) == 1:
|
|
return SingularityFunction(x, solve(args[0], x)[0], -1)
|
|
return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1)
|
|
else:
|
|
# I don't know how to handle the case for DiracDelta expressions
|
|
# having arguments with more than one variable.
|
|
raise TypeError(filldedent('''
|
|
rewrite(SingularityFunction) does not support
|
|
arguments with more that one variable.'''))
|
|
|
|
|
|
###############################################################################
|
|
############################## HEAVISIDE FUNCTION #############################
|
|
###############################################################################
|
|
|
|
|
|
class Heaviside(Function):
|
|
r"""
|
|
Heaviside step function.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The Heaviside step function has the following properties:
|
|
|
|
1) $\frac{d}{d x} \theta(x) = \delta(x)$
|
|
2) $\theta(x) = \begin{cases} 0 & \text{for}\: x < 0 \\ \frac{1}{2} &
|
|
\text{for}\: x = 0 \\1 & \text{for}\: x > 0 \end{cases}$
|
|
3) $\frac{d}{d x} \max(x, 0) = \theta(x)$
|
|
|
|
Heaviside(x) is printed as $\theta(x)$ with the SymPy LaTeX printer.
|
|
|
|
The value at 0 is set differently in different fields. SymPy uses 1/2,
|
|
which is a convention from electronics and signal processing, and is
|
|
consistent with solving improper integrals by Fourier transform and
|
|
convolution.
|
|
|
|
To specify a different value of Heaviside at ``x=0``, a second argument
|
|
can be given. Using ``Heaviside(x, nan)`` gives an expression that will
|
|
evaluate to nan for x=0.
|
|
|
|
.. versionchanged:: 1.9 ``Heaviside(0)`` now returns 1/2 (before: undefined)
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Heaviside, nan
|
|
>>> from sympy.abc import x
|
|
>>> Heaviside(9)
|
|
1
|
|
>>> Heaviside(-9)
|
|
0
|
|
>>> Heaviside(0)
|
|
1/2
|
|
>>> Heaviside(0, nan)
|
|
nan
|
|
>>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1))
|
|
Heaviside(x, 1) + 1
|
|
|
|
See Also
|
|
========
|
|
|
|
DiracDelta
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/HeavisideStepFunction.html
|
|
.. [2] https://dlmf.nist.gov/1.16#iv
|
|
|
|
"""
|
|
|
|
is_real = True
|
|
|
|
def fdiff(self, argindex=1):
|
|
"""
|
|
Returns the first derivative of a Heaviside Function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Heaviside, diff
|
|
>>> from sympy.abc import x
|
|
|
|
>>> Heaviside(x).fdiff()
|
|
DiracDelta(x)
|
|
|
|
>>> Heaviside(x**2 - 1).fdiff()
|
|
DiracDelta(x**2 - 1)
|
|
|
|
>>> diff(Heaviside(x)).fdiff()
|
|
DiracDelta(x, 1)
|
|
|
|
Parameters
|
|
==========
|
|
|
|
argindex : integer
|
|
order of derivative
|
|
|
|
"""
|
|
if argindex == 1:
|
|
return DiracDelta(self.args[0])
|
|
else:
|
|
raise ArgumentIndexError(self, argindex)
|
|
|
|
def __new__(cls, arg, H0=S.Half, **options):
|
|
if isinstance(H0, Heaviside) and len(H0.args) == 1:
|
|
H0 = S.Half
|
|
return super(cls, cls).__new__(cls, arg, H0, **options)
|
|
|
|
@property
|
|
def pargs(self):
|
|
"""Args without default S.Half"""
|
|
args = self.args
|
|
if args[1] is S.Half:
|
|
args = args[:1]
|
|
return args
|
|
|
|
@classmethod
|
|
def eval(cls, arg, H0=S.Half):
|
|
"""
|
|
Returns a simplified form or a value of Heaviside depending on the
|
|
argument passed by the Heaviside object.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The ``eval()`` method is automatically called when the ``Heaviside``
|
|
class is about to be instantiated and it returns either some simplified
|
|
instance or the unevaluated instance depending on the argument passed.
|
|
In other words, ``eval()`` method is not needed to be called explicitly,
|
|
it is being called and evaluated once the object is called.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Heaviside, S
|
|
>>> from sympy.abc import x
|
|
|
|
>>> Heaviside(x)
|
|
Heaviside(x)
|
|
|
|
>>> Heaviside(19)
|
|
1
|
|
|
|
>>> Heaviside(0)
|
|
1/2
|
|
|
|
>>> Heaviside(0, 1)
|
|
1
|
|
|
|
>>> Heaviside(-5)
|
|
0
|
|
|
|
>>> Heaviside(S.NaN)
|
|
nan
|
|
|
|
>>> Heaviside(x - 100).subs(x, 5)
|
|
0
|
|
|
|
>>> Heaviside(x - 100).subs(x, 105)
|
|
1
|
|
|
|
Parameters
|
|
==========
|
|
|
|
arg : argument passed by Heaviside object
|
|
|
|
H0 : value of Heaviside(0)
|
|
|
|
"""
|
|
if arg.is_extended_negative:
|
|
return S.Zero
|
|
elif arg.is_extended_positive:
|
|
return S.One
|
|
elif arg.is_zero:
|
|
return H0
|
|
elif arg is S.NaN:
|
|
return S.NaN
|
|
elif fuzzy_not(im(arg).is_zero):
|
|
raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) )
|
|
|
|
def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs):
|
|
"""
|
|
Represents Heaviside in a Piecewise form.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Heaviside, Piecewise, Symbol, nan
|
|
>>> x = Symbol('x')
|
|
|
|
>>> Heaviside(x).rewrite(Piecewise)
|
|
Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, True))
|
|
|
|
>>> Heaviside(x,nan).rewrite(Piecewise)
|
|
Piecewise((0, x < 0), (nan, Eq(x, 0)), (1, True))
|
|
|
|
>>> Heaviside(x - 5).rewrite(Piecewise)
|
|
Piecewise((0, x < 5), (1/2, Eq(x, 5)), (1, True))
|
|
|
|
>>> Heaviside(x**2 - 1).rewrite(Piecewise)
|
|
Piecewise((0, x**2 < 1), (1/2, Eq(x**2, 1)), (1, True))
|
|
|
|
"""
|
|
if H0 == 0:
|
|
return Piecewise((0, arg <= 0), (1, True))
|
|
if H0 == 1:
|
|
return Piecewise((0, arg < 0), (1, True))
|
|
return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, True))
|
|
|
|
def _eval_rewrite_as_sign(self, arg, H0=S.Half, **kwargs):
|
|
"""
|
|
Represents the Heaviside function in the form of sign function.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The value of Heaviside(0) must be 1/2 for rewriting as sign to be
|
|
strictly equivalent. For easier usage, we also allow this rewriting
|
|
when Heaviside(0) is undefined.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Heaviside, Symbol, sign, nan
|
|
>>> x = Symbol('x', real=True)
|
|
>>> y = Symbol('y')
|
|
|
|
>>> Heaviside(x).rewrite(sign)
|
|
sign(x)/2 + 1/2
|
|
|
|
>>> Heaviside(x, 0).rewrite(sign)
|
|
Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True))
|
|
|
|
>>> Heaviside(x, nan).rewrite(sign)
|
|
Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (nan, True))
|
|
|
|
>>> Heaviside(x - 2).rewrite(sign)
|
|
sign(x - 2)/2 + 1/2
|
|
|
|
>>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
|
|
sign(x**2 - 2*x + 1)/2 + 1/2
|
|
|
|
>>> Heaviside(y).rewrite(sign)
|
|
Heaviside(y)
|
|
|
|
>>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
|
|
Heaviside(y**2 - 2*y + 1)
|
|
|
|
See Also
|
|
========
|
|
|
|
sign
|
|
|
|
"""
|
|
if arg.is_extended_real:
|
|
pw1 = Piecewise(
|
|
((sign(arg) + 1)/2, Ne(arg, 0)),
|
|
(Heaviside(0, H0=H0), True))
|
|
pw2 = Piecewise(
|
|
((sign(arg) + 1)/2, Eq(Heaviside(0, H0=H0), S.Half)),
|
|
(pw1, True))
|
|
return pw2
|
|
|
|
def _eval_rewrite_as_SingularityFunction(self, args, H0=S.Half, **kwargs):
|
|
"""
|
|
Returns the Heaviside expression written in the form of Singularity
|
|
Functions.
|
|
|
|
"""
|
|
from sympy.solvers import solve
|
|
from sympy.functions.special.singularity_functions import SingularityFunction
|
|
if self == Heaviside(0):
|
|
return SingularityFunction(0, 0, 0)
|
|
free = self.free_symbols
|
|
if len(free) == 1:
|
|
x = (free.pop())
|
|
return SingularityFunction(x, solve(args, x)[0], 0)
|
|
# TODO
|
|
# ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output
|
|
# SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0)
|
|
else:
|
|
# I don't know how to handle the case for Heaviside expressions
|
|
# having arguments with more than one variable.
|
|
raise TypeError(filldedent('''
|
|
rewrite(SingularityFunction) does not
|
|
support arguments with more that one variable.'''))
|