175 lines
3.7 KiB
Python
175 lines
3.7 KiB
Python
from .utilities import _iszero
|
|
|
|
|
|
def _columnspace(M, simplify=False):
|
|
"""Returns a list of vectors (Matrix objects) that span columnspace of ``M``
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
|
|
>>> M
|
|
Matrix([
|
|
[ 1, 3, 0],
|
|
[-2, -6, 0],
|
|
[ 3, 9, 6]])
|
|
>>> M.columnspace()
|
|
[Matrix([
|
|
[ 1],
|
|
[-2],
|
|
[ 3]]), Matrix([
|
|
[0],
|
|
[0],
|
|
[6]])]
|
|
|
|
See Also
|
|
========
|
|
|
|
nullspace
|
|
rowspace
|
|
"""
|
|
|
|
reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True)
|
|
|
|
return [M.col(i) for i in pivots]
|
|
|
|
|
|
def _nullspace(M, simplify=False, iszerofunc=_iszero):
|
|
"""Returns list of vectors (Matrix objects) that span nullspace of ``M``
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
|
|
>>> M
|
|
Matrix([
|
|
[ 1, 3, 0],
|
|
[-2, -6, 0],
|
|
[ 3, 9, 6]])
|
|
>>> M.nullspace()
|
|
[Matrix([
|
|
[-3],
|
|
[ 1],
|
|
[ 0]])]
|
|
|
|
See Also
|
|
========
|
|
|
|
columnspace
|
|
rowspace
|
|
"""
|
|
|
|
reduced, pivots = M.rref(iszerofunc=iszerofunc, simplify=simplify)
|
|
|
|
free_vars = [i for i in range(M.cols) if i not in pivots]
|
|
basis = []
|
|
|
|
for free_var in free_vars:
|
|
# for each free variable, we will set it to 1 and all others
|
|
# to 0. Then, we will use back substitution to solve the system
|
|
vec = [M.zero] * M.cols
|
|
vec[free_var] = M.one
|
|
|
|
for piv_row, piv_col in enumerate(pivots):
|
|
vec[piv_col] -= reduced[piv_row, free_var]
|
|
|
|
basis.append(vec)
|
|
|
|
return [M._new(M.cols, 1, b) for b in basis]
|
|
|
|
|
|
def _rowspace(M, simplify=False):
|
|
"""Returns a list of vectors that span the row space of ``M``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
|
|
>>> M
|
|
Matrix([
|
|
[ 1, 3, 0],
|
|
[-2, -6, 0],
|
|
[ 3, 9, 6]])
|
|
>>> M.rowspace()
|
|
[Matrix([[1, 3, 0]]), Matrix([[0, 0, 6]])]
|
|
"""
|
|
|
|
reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True)
|
|
|
|
return [reduced.row(i) for i in range(len(pivots))]
|
|
|
|
|
|
def _orthogonalize(cls, *vecs, normalize=False, rankcheck=False):
|
|
"""Apply the Gram-Schmidt orthogonalization procedure
|
|
to vectors supplied in ``vecs``.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
vecs
|
|
vectors to be made orthogonal
|
|
|
|
normalize : bool
|
|
If ``True``, return an orthonormal basis.
|
|
|
|
rankcheck : bool
|
|
If ``True``, the computation does not stop when encountering
|
|
linearly dependent vectors.
|
|
|
|
If ``False``, it will raise ``ValueError`` when any zero
|
|
or linearly dependent vectors are found.
|
|
|
|
Returns
|
|
=======
|
|
|
|
list
|
|
List of orthogonal (or orthonormal) basis vectors.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import I, Matrix
|
|
>>> v = [Matrix([1, I]), Matrix([1, -I])]
|
|
>>> Matrix.orthogonalize(*v)
|
|
[Matrix([
|
|
[1],
|
|
[I]]), Matrix([
|
|
[ 1],
|
|
[-I]])]
|
|
|
|
See Also
|
|
========
|
|
|
|
MatrixBase.QRdecomposition
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
|
|
"""
|
|
from .decompositions import _QRdecomposition_optional
|
|
|
|
if not vecs:
|
|
return []
|
|
|
|
all_row_vecs = (vecs[0].rows == 1)
|
|
|
|
vecs = [x.vec() for x in vecs]
|
|
M = cls.hstack(*vecs)
|
|
Q, R = _QRdecomposition_optional(M, normalize=normalize)
|
|
|
|
if rankcheck and Q.cols < len(vecs):
|
|
raise ValueError("GramSchmidt: vector set not linearly independent")
|
|
|
|
ret = []
|
|
for i in range(Q.cols):
|
|
if all_row_vecs:
|
|
col = cls(Q[:, i].T)
|
|
else:
|
|
col = cls(Q[:, i])
|
|
ret.append(col)
|
|
return ret
|