Traktor/myenv/Lib/site-packages/sympy/ntheory/qs.py
2024-05-26 05:12:46 +02:00

516 lines
18 KiB
Python

from sympy.core.numbers import igcd, mod_inverse
from sympy.core.power import integer_nthroot
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
from sympy.ntheory import isprime
from math import log, sqrt
import random
rgen = random.Random()
class SievePolynomial:
def __init__(self, modified_coeff=(), a=None, b=None):
"""This class denotes the seive polynomial.
If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
ensures faster `eval` method because we dont have to
perform `a**2, 2*a*b, b**2` every time we call the
`eval` method. As multiplication is more expensive
than addition, by using modified_coefficient we get
a faster seiving process.
Parameters
==========
modified_coeff : modified_coefficient of sieve polynomial
a : parameter of the sieve polynomial
b : parameter of the sieve polynomial
"""
self.modified_coeff = modified_coeff
self.a = a
self.b = b
def eval(self, x):
"""
Compute the value of the sieve polynomial at point x.
Parameters
==========
x : Integer parameter for sieve polynomial
"""
ans = 0
for coeff in self.modified_coeff:
ans *= x
ans += coeff
return ans
class FactorBaseElem:
"""This class stores an element of the `factor_base`.
"""
def __init__(self, prime, tmem_p, log_p):
"""
Initialization of factor_base_elem.
Parameters
==========
prime : prime number of the factor_base
tmem_p : Integer square root of x**2 = n mod prime
log_p : Compute Natural Logarithm of the prime
"""
self.prime = prime
self.tmem_p = tmem_p
self.log_p = log_p
self.soln1 = None
self.soln2 = None
self.a_inv = None
self.b_ainv = None
def _generate_factor_base(prime_bound, n):
"""Generate `factor_base` for Quadratic Sieve. The `factor_base`
consists of all the points whose ``legendre_symbol(n, p) == 1``
and ``p < num_primes``. Along with the prime `factor_base` also stores
natural logarithm of prime and the residue n modulo p.
It also returns the of primes numbers in the `factor_base` which are
close to 1000 and 5000.
Parameters
==========
prime_bound : upper prime bound of the factor_base
n : integer to be factored
"""
from sympy.ntheory.generate import sieve
factor_base = []
idx_1000, idx_5000 = None, None
for prime in sieve.primerange(1, prime_bound):
if pow(n, (prime - 1) // 2, prime) == 1:
if prime > 1000 and idx_1000 is None:
idx_1000 = len(factor_base) - 1
if prime > 5000 and idx_5000 is None:
idx_5000 = len(factor_base) - 1
residue = _sqrt_mod_prime_power(n, prime, 1)[0]
log_p = round(log(prime)*2**10)
factor_base.append(FactorBaseElem(prime, residue, log_p))
return idx_1000, idx_5000, factor_base
def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None):
"""This step is the initialization of the 1st sieve polynomial.
Here `a` is selected as a product of several primes of the factor_base
such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
factor_base elem are also initialized which includes a_inv, b_ainv, soln1,
soln2 which are used when the sieve polynomial is changed. The b_ainv
is required for fast polynomial change as we do not have to calculate
`2*b*mod_inverse(a, prime)` every time.
We also ensure that the `factor_base` primes which make `a` are between
1000 and 5000.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
idx_1000 : index of prime number in the factor_base near 1000
idx_5000 : index of prime number in the factor_base near to 5000
seed : Generate pseudoprime numbers
"""
if seed is not None:
rgen.seed(seed)
approx_val = sqrt(2*N) / M
# `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a`
# randomly search for a combination of primes whose multiplication is close to approx_val
# This multiplication of primes will be `a` and the primes will be `q`
# `best_a` denotes that `a` is close to approx_val in the random search of combination
best_a, best_q, best_ratio = None, None, None
start = 0 if idx_1000 is None else idx_1000
end = len(factor_base) - 1 if idx_5000 is None else idx_5000
for _ in range(50):
a = 1
q = []
while(a < approx_val):
rand_p = 0
while(rand_p == 0 or rand_p in q):
rand_p = rgen.randint(start, end)
p = factor_base[rand_p].prime
a *= p
q.append(rand_p)
ratio = a / approx_val
if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
best_q = q
best_a = a
best_ratio = ratio
a = best_a
q = best_q
B = []
for idx, val in enumerate(q):
q_l = factor_base[val].prime
gamma = factor_base[val].tmem_p * mod_inverse(a // q_l, q_l) % q_l
if gamma > q_l / 2:
gamma = q_l - gamma
B.append(a//q_l*gamma)
b = sum(B)
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
for fb in factor_base:
if a % fb.prime == 0:
continue
fb.a_inv = mod_inverse(a, fb.prime)
fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B]
fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime
fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime
return g, B
def _initialize_ith_poly(N, factor_base, i, g, B):
"""Initialization stage of ith poly. After we finish sieving 1`st polynomial
here we quickly change to the next polynomial from which we will again
start sieving. Suppose we generated ith sieve polynomial and now we
want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
where `j` is the number of prime factors of the coefficient `a`
then this function can be used to go to the next polynomial. If
``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.
Parameters
==========
N : number to be factored
factor_base : factor_base primes
i : integer denoting ith polynomial
g : (i - 1)th polynomial
B : array that stores a//q_l*gamma
"""
from sympy.functions.elementary.integers import ceiling
v = 1
j = i
while(j % 2 == 0):
v += 1
j //= 2
if ceiling(i / (2**v)) % 2 == 1:
neg_pow = -1
else:
neg_pow = 1
b = g.b + 2*neg_pow*B[v - 1]
a = g.a
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
for fb in factor_base:
if a % fb.prime == 0:
continue
fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
return g
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that does not divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
def _check_smoothness(num, factor_base):
"""Here we check that if `num` is a smooth number or not. If `a` is a smooth
number then it returns a vector of prime exponents modulo 2. For example
if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
`a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
`a` is a partial relation which means that `a` a has one prime factor
greater than the `factor_base` then it returns `(a, False)` which denotes `a`
is a partial relation.
Parameters
==========
a : integer whose smootheness is to be checked
factor_base : factor_base primes
"""
vec = []
if num < 0:
vec.append(1)
num *= -1
else:
vec.append(0)
#-1 is not included in factor_base add -1 in vector
for factor in factor_base:
if num % factor.prime != 0:
vec.append(0)
continue
factor_exp = 0
while num % factor.prime == 0:
factor_exp += 1
num //= factor.prime
vec.append(factor_exp % 2)
if num == 1:
return vec, True
if isprime(num):
return num, False
return None, None
def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
"""Trial division stage. Here we trial divide the values generetated
by sieve_poly in the sieve interval and if it is a smooth number then
it is stored in `smooth_relations`. Moreover, if we find two partial relations
with same large prime then they are combined to form a smooth relation.
First we iterate over sieve array and look for values which are greater
than accumulated_val, as these values have a high chance of being smooth
number. Then using these values we find smooth relations.
In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
to form a smooth relation.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
sieve_array : stores log_p values
sieve_poly : polynomial from which we find smooth relations
partial_relations : stores partial relations with one large prime
ERROR_TERM : error term for accumulated_val
"""
sqrt_n = sqrt(float(N))
accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM
smooth_relations = []
proper_factor = set()
partial_relation_upper_bound = 128*factor_base[-1].prime
for idx, val in enumerate(sieve_array):
if val < accumulated_val:
continue
x = idx - M
v = sieve_poly.eval(x)
vec, is_smooth = _check_smoothness(v, factor_base)
if is_smooth is None:#Neither smooth nor partial
continue
u = sieve_poly.a*x + sieve_poly.b
# Update the partial relation
# If 2 partial relation with same large prime is found then generate smooth relation
if is_smooth is False:#partial relation found
large_prime = vec
#Consider the large_primes under 128*F
if large_prime > partial_relation_upper_bound:
continue
if large_prime not in partial_relations:
partial_relations[large_prime] = (u, v)
continue
else:
u_prev, v_prev = partial_relations[large_prime]
partial_relations.pop(large_prime)
try:
large_prime_inv = mod_inverse(large_prime, N)
except ValueError:#if large_prine divides N
proper_factor.add(large_prime)
continue
u = u*u_prev*large_prime_inv
v = v*v_prev // (large_prime*large_prime)
vec, is_smooth = _check_smoothness(v, factor_base)
#assert u*u % N == v % N
smooth_relations.append((u, v, vec))
return smooth_relations, proper_factor
#LINEAR ALGEBRA STAGE
def _build_matrix(smooth_relations):
"""Build a 2D matrix from smooth relations.
Parameters
==========
smooth_relations : Stores smooth relations
"""
matrix = []
for s_relation in smooth_relations:
matrix.append(s_relation[2])
return matrix
def _gauss_mod_2(A):
"""Fast gaussian reduction for modulo 2 matrix.
Parameters
==========
A : Matrix
Examples
========
>>> from sympy.ntheory.qs import _gauss_mod_2
>>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
([[[1, 0, 1], 3]],
[True, True, True, False],
[[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])
Reference
==========
.. [1] A fast algorithm for gaussian elimination over GF(2) and
its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige"""
import copy
matrix = copy.deepcopy(A)
row = len(matrix)
col = len(matrix[0])
mark = [False]*row
for c in range(col):
for r in range(row):
if matrix[r][c] == 1:
break
mark[r] = True
for c1 in range(col):
if c1 == c:
continue
if matrix[r][c1] == 1:
for r2 in range(row):
matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2
dependent_row = []
for idx, val in enumerate(mark):
if val == False:
dependent_row.append([matrix[idx], idx])
return dependent_row, mark, matrix
def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N):
"""Finds proper factor of N. Here, transform the dependent rows as a
combination of independent rows of the gauss_matrix to form the desired
relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
we obtain a proper factor of N by `gcd(X - Y, N)`.
Parameters
==========
dependent_rows : denoted dependent rows in the reduced matrix form
mark : boolean array to denoted dependent and independent rows
gauss_matrix : Reduced form of the smooth relations matrix
index : denoted the index of the dependent_rows
smooth_relations : Smooth relations vectors matrix
N : Number to be factored
"""
idx_in_smooth = dependent_rows[index][1]
independent_u = [smooth_relations[idx_in_smooth][0]]
independent_v = [smooth_relations[idx_in_smooth][1]]
dept_row = dependent_rows[index][0]
for idx, val in enumerate(dept_row):
if val == 1:
for row in range(len(gauss_matrix)):
if gauss_matrix[row][idx] == 1 and mark[row] == True:
independent_u.append(smooth_relations[row][0])
independent_v.append(smooth_relations[row][1])
break
u = 1
v = 1
for i in independent_u:
u *= i
for i in independent_v:
v *= i
#assert u**2 % N == v % N
v = integer_nthroot(v, 2)[0]
return igcd(u - v, N)
def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
"""Performs factorization using Self-Initializing Quadratic Sieve.
In SIQS, let N be a number to be factored, and this N should not be a
perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
In order to find these integers X and Y we try to find relations of form
t**2 = u modN where u is a product of small primes. If we have enough of
these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
Here, several optimizations are done like using multiple polynomials for
sieving, fast changing between polynomials and using partial relations.
The use of partial relations can speeds up the factoring by 2 times.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
threshold : Extra smooth relations for factorization
seed : generate pseudo prime numbers
Examples
========
>>> from sympy.ntheory import qs
>>> qs(25645121643901801, 2000, 10000)
{5394769, 4753701529}
>>> qs(9804659461513846513, 2000, 10000)
{4641991, 2112166839943}
References
==========
.. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
.. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
"""
ERROR_TERM*=2**10
rgen.seed(seed)
idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
smooth_relations = []
ith_poly = 0
partial_relations = {}
proper_factor = set()
threshold = 5*len(factor_base) // 100
while True:
if ith_poly == 0:
ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000)
else:
ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array)
ith_poly += 1
if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial
ith_poly = 0
sieve_array = _gen_sieve_array(M, factor_base)
s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM)
smooth_relations += s_rel
proper_factor |= p_f
if len(smooth_relations) >= len(factor_base) + threshold:
break
matrix = _build_matrix(smooth_relations)
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
N_copy = N
for index in range(len(dependent_row)):
factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N)
if factor > 1 and factor < N:
proper_factor.add(factor)
while(N_copy % factor == 0):
N_copy //= factor
if isprime(N_copy):
proper_factor.add(N_copy)
break
if(N_copy == 1):
break
return proper_factor