231 lines
6.3 KiB
Python
231 lines
6.3 KiB
Python
#!/usr/bin/env python
|
|
"""This module contains some sample symbolic models used for testing and
|
|
examples."""
|
|
|
|
# Internal imports
|
|
from sympy.core import backend as sm
|
|
import sympy.physics.mechanics as me
|
|
|
|
|
|
def multi_mass_spring_damper(n=1, apply_gravity=False,
|
|
apply_external_forces=False):
|
|
r"""Returns a system containing the symbolic equations of motion and
|
|
associated variables for a simple multi-degree of freedom point mass,
|
|
spring, damper system with optional gravitational and external
|
|
specified forces. For example, a two mass system under the influence of
|
|
gravity and external forces looks like:
|
|
|
|
::
|
|
|
|
----------------
|
|
| | | | g
|
|
\ | | | V
|
|
k0 / --- c0 |
|
|
| | | x0, v0
|
|
--------- V
|
|
| m0 | -----
|
|
--------- |
|
|
| | | |
|
|
\ v | | |
|
|
k1 / f0 --- c1 |
|
|
| | | x1, v1
|
|
--------- V
|
|
| m1 | -----
|
|
---------
|
|
| f1
|
|
V
|
|
|
|
Parameters
|
|
==========
|
|
|
|
n : integer
|
|
The number of masses in the serial chain.
|
|
apply_gravity : boolean
|
|
If true, gravity will be applied to each mass.
|
|
apply_external_forces : boolean
|
|
If true, a time varying external force will be applied to each mass.
|
|
|
|
Returns
|
|
=======
|
|
|
|
kane : sympy.physics.mechanics.kane.KanesMethod
|
|
A KanesMethod object.
|
|
|
|
"""
|
|
|
|
mass = sm.symbols('m:{}'.format(n))
|
|
stiffness = sm.symbols('k:{}'.format(n))
|
|
damping = sm.symbols('c:{}'.format(n))
|
|
|
|
acceleration_due_to_gravity = sm.symbols('g')
|
|
|
|
coordinates = me.dynamicsymbols('x:{}'.format(n))
|
|
speeds = me.dynamicsymbols('v:{}'.format(n))
|
|
specifieds = me.dynamicsymbols('f:{}'.format(n))
|
|
|
|
ceiling = me.ReferenceFrame('N')
|
|
origin = me.Point('origin')
|
|
origin.set_vel(ceiling, 0)
|
|
|
|
points = [origin]
|
|
kinematic_equations = []
|
|
particles = []
|
|
forces = []
|
|
|
|
for i in range(n):
|
|
|
|
center = points[-1].locatenew('center{}'.format(i),
|
|
coordinates[i] * ceiling.x)
|
|
center.set_vel(ceiling, points[-1].vel(ceiling) +
|
|
speeds[i] * ceiling.x)
|
|
points.append(center)
|
|
|
|
block = me.Particle('block{}'.format(i), center, mass[i])
|
|
|
|
kinematic_equations.append(speeds[i] - coordinates[i].diff())
|
|
|
|
total_force = (-stiffness[i] * coordinates[i] -
|
|
damping[i] * speeds[i])
|
|
try:
|
|
total_force += (stiffness[i + 1] * coordinates[i + 1] +
|
|
damping[i + 1] * speeds[i + 1])
|
|
except IndexError: # no force from below on last mass
|
|
pass
|
|
|
|
if apply_gravity:
|
|
total_force += mass[i] * acceleration_due_to_gravity
|
|
|
|
if apply_external_forces:
|
|
total_force += specifieds[i]
|
|
|
|
forces.append((center, total_force * ceiling.x))
|
|
|
|
particles.append(block)
|
|
|
|
kane = me.KanesMethod(ceiling, q_ind=coordinates, u_ind=speeds,
|
|
kd_eqs=kinematic_equations)
|
|
kane.kanes_equations(particles, forces)
|
|
|
|
return kane
|
|
|
|
|
|
def n_link_pendulum_on_cart(n=1, cart_force=True, joint_torques=False):
|
|
r"""Returns the system containing the symbolic first order equations of
|
|
motion for a 2D n-link pendulum on a sliding cart under the influence of
|
|
gravity.
|
|
|
|
::
|
|
|
|
|
|
|
o y v
|
|
\ 0 ^ g
|
|
\ |
|
|
--\-|----
|
|
| \| |
|
|
F-> | o --|---> x
|
|
| |
|
|
---------
|
|
o o
|
|
|
|
Parameters
|
|
==========
|
|
|
|
n : integer
|
|
The number of links in the pendulum.
|
|
cart_force : boolean, default=True
|
|
If true an external specified lateral force is applied to the cart.
|
|
joint_torques : boolean, default=False
|
|
If true joint torques will be added as specified inputs at each
|
|
joint.
|
|
|
|
Returns
|
|
=======
|
|
|
|
kane : sympy.physics.mechanics.kane.KanesMethod
|
|
A KanesMethod object.
|
|
|
|
Notes
|
|
=====
|
|
|
|
The degrees of freedom of the system are n + 1, i.e. one for each
|
|
pendulum link and one for the lateral motion of the cart.
|
|
|
|
M x' = F, where x = [u0, ..., un+1, q0, ..., qn+1]
|
|
|
|
The joint angles are all defined relative to the ground where the x axis
|
|
defines the ground line and the y axis points up. The joint torques are
|
|
applied between each adjacent link and the between the cart and the
|
|
lower link where a positive torque corresponds to positive angle.
|
|
|
|
"""
|
|
if n <= 0:
|
|
raise ValueError('The number of links must be a positive integer.')
|
|
|
|
q = me.dynamicsymbols('q:{}'.format(n + 1))
|
|
u = me.dynamicsymbols('u:{}'.format(n + 1))
|
|
|
|
if joint_torques is True:
|
|
T = me.dynamicsymbols('T1:{}'.format(n + 1))
|
|
|
|
m = sm.symbols('m:{}'.format(n + 1))
|
|
l = sm.symbols('l:{}'.format(n))
|
|
g, t = sm.symbols('g t')
|
|
|
|
I = me.ReferenceFrame('I')
|
|
O = me.Point('O')
|
|
O.set_vel(I, 0)
|
|
|
|
P0 = me.Point('P0')
|
|
P0.set_pos(O, q[0] * I.x)
|
|
P0.set_vel(I, u[0] * I.x)
|
|
Pa0 = me.Particle('Pa0', P0, m[0])
|
|
|
|
frames = [I]
|
|
points = [P0]
|
|
particles = [Pa0]
|
|
forces = [(P0, -m[0] * g * I.y)]
|
|
kindiffs = [q[0].diff(t) - u[0]]
|
|
|
|
if cart_force is True or joint_torques is True:
|
|
specified = []
|
|
else:
|
|
specified = None
|
|
|
|
for i in range(n):
|
|
Bi = I.orientnew('B{}'.format(i), 'Axis', [q[i + 1], I.z])
|
|
Bi.set_ang_vel(I, u[i + 1] * I.z)
|
|
frames.append(Bi)
|
|
|
|
Pi = points[-1].locatenew('P{}'.format(i + 1), l[i] * Bi.y)
|
|
Pi.v2pt_theory(points[-1], I, Bi)
|
|
points.append(Pi)
|
|
|
|
Pai = me.Particle('Pa' + str(i + 1), Pi, m[i + 1])
|
|
particles.append(Pai)
|
|
|
|
forces.append((Pi, -m[i + 1] * g * I.y))
|
|
|
|
if joint_torques is True:
|
|
|
|
specified.append(T[i])
|
|
|
|
if i == 0:
|
|
forces.append((I, -T[i] * I.z))
|
|
|
|
if i == n - 1:
|
|
forces.append((Bi, T[i] * I.z))
|
|
else:
|
|
forces.append((Bi, T[i] * I.z - T[i + 1] * I.z))
|
|
|
|
kindiffs.append(q[i + 1].diff(t) - u[i + 1])
|
|
|
|
if cart_force is True:
|
|
F = me.dynamicsymbols('F')
|
|
forces.append((P0, F * I.x))
|
|
specified.append(F)
|
|
|
|
kane = me.KanesMethod(I, q_ind=q, u_ind=u, kd_eqs=kindiffs)
|
|
kane.kanes_equations(particles, forces)
|
|
|
|
return kane
|