395 lines
11 KiB
Python
395 lines
11 KiB
Python
"""Computations with ideals of polynomial rings."""
|
|
|
|
from sympy.polys.polyerrors import CoercionFailed
|
|
from sympy.polys.polyutils import IntegerPowerable
|
|
|
|
|
|
class Ideal(IntegerPowerable):
|
|
"""
|
|
Abstract base class for ideals.
|
|
|
|
Do not instantiate - use explicit constructors in the ring class instead:
|
|
|
|
>>> from sympy import QQ
|
|
>>> from sympy.abc import x
|
|
>>> QQ.old_poly_ring(x).ideal(x+1)
|
|
<x + 1>
|
|
|
|
Attributes
|
|
|
|
- ring - the ring this ideal belongs to
|
|
|
|
Non-implemented methods:
|
|
|
|
- _contains_elem
|
|
- _contains_ideal
|
|
- _quotient
|
|
- _intersect
|
|
- _union
|
|
- _product
|
|
- is_whole_ring
|
|
- is_zero
|
|
- is_prime, is_maximal, is_primary, is_radical
|
|
- is_principal
|
|
- height, depth
|
|
- radical
|
|
|
|
Methods that likely should be overridden in subclasses:
|
|
|
|
- reduce_element
|
|
"""
|
|
|
|
def _contains_elem(self, x):
|
|
"""Implementation of element containment."""
|
|
raise NotImplementedError
|
|
|
|
def _contains_ideal(self, I):
|
|
"""Implementation of ideal containment."""
|
|
raise NotImplementedError
|
|
|
|
def _quotient(self, J):
|
|
"""Implementation of ideal quotient."""
|
|
raise NotImplementedError
|
|
|
|
def _intersect(self, J):
|
|
"""Implementation of ideal intersection."""
|
|
raise NotImplementedError
|
|
|
|
def is_whole_ring(self):
|
|
"""Return True if ``self`` is the whole ring."""
|
|
raise NotImplementedError
|
|
|
|
def is_zero(self):
|
|
"""Return True if ``self`` is the zero ideal."""
|
|
raise NotImplementedError
|
|
|
|
def _equals(self, J):
|
|
"""Implementation of ideal equality."""
|
|
return self._contains_ideal(J) and J._contains_ideal(self)
|
|
|
|
def is_prime(self):
|
|
"""Return True if ``self`` is a prime ideal."""
|
|
raise NotImplementedError
|
|
|
|
def is_maximal(self):
|
|
"""Return True if ``self`` is a maximal ideal."""
|
|
raise NotImplementedError
|
|
|
|
def is_radical(self):
|
|
"""Return True if ``self`` is a radical ideal."""
|
|
raise NotImplementedError
|
|
|
|
def is_primary(self):
|
|
"""Return True if ``self`` is a primary ideal."""
|
|
raise NotImplementedError
|
|
|
|
def is_principal(self):
|
|
"""Return True if ``self`` is a principal ideal."""
|
|
raise NotImplementedError
|
|
|
|
def radical(self):
|
|
"""Compute the radical of ``self``."""
|
|
raise NotImplementedError
|
|
|
|
def depth(self):
|
|
"""Compute the depth of ``self``."""
|
|
raise NotImplementedError
|
|
|
|
def height(self):
|
|
"""Compute the height of ``self``."""
|
|
raise NotImplementedError
|
|
|
|
# TODO more
|
|
|
|
# non-implemented methods end here
|
|
|
|
def __init__(self, ring):
|
|
self.ring = ring
|
|
|
|
def _check_ideal(self, J):
|
|
"""Helper to check ``J`` is an ideal of our ring."""
|
|
if not isinstance(J, Ideal) or J.ring != self.ring:
|
|
raise ValueError(
|
|
'J must be an ideal of %s, got %s' % (self.ring, J))
|
|
|
|
def contains(self, elem):
|
|
"""
|
|
Return True if ``elem`` is an element of this ideal.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3)
|
|
True
|
|
>>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x)
|
|
False
|
|
"""
|
|
return self._contains_elem(self.ring.convert(elem))
|
|
|
|
def subset(self, other):
|
|
"""
|
|
Returns True if ``other`` is is a subset of ``self``.
|
|
|
|
Here ``other`` may be an ideal.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> I = QQ.old_poly_ring(x).ideal(x+1)
|
|
>>> I.subset([x**2 - 1, x**2 + 2*x + 1])
|
|
True
|
|
>>> I.subset([x**2 + 1, x + 1])
|
|
False
|
|
>>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1))
|
|
True
|
|
"""
|
|
if isinstance(other, Ideal):
|
|
return self._contains_ideal(other)
|
|
return all(self._contains_elem(x) for x in other)
|
|
|
|
def quotient(self, J, **opts):
|
|
r"""
|
|
Compute the ideal quotient of ``self`` by ``J``.
|
|
|
|
That is, if ``self`` is the ideal `I`, compute the set
|
|
`I : J = \{x \in R | xJ \subset I \}`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import QQ
|
|
>>> R = QQ.old_poly_ring(x, y)
|
|
>>> R.ideal(x*y).quotient(R.ideal(x))
|
|
<y>
|
|
"""
|
|
self._check_ideal(J)
|
|
return self._quotient(J, **opts)
|
|
|
|
def intersect(self, J):
|
|
"""
|
|
Compute the intersection of self with ideal J.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import QQ
|
|
>>> R = QQ.old_poly_ring(x, y)
|
|
>>> R.ideal(x).intersect(R.ideal(y))
|
|
<x*y>
|
|
"""
|
|
self._check_ideal(J)
|
|
return self._intersect(J)
|
|
|
|
def saturate(self, J):
|
|
r"""
|
|
Compute the ideal saturation of ``self`` by ``J``.
|
|
|
|
That is, if ``self`` is the ideal `I`, compute the set
|
|
`I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}`.
|
|
"""
|
|
raise NotImplementedError
|
|
# Note this can be implemented using repeated quotient
|
|
|
|
def union(self, J):
|
|
"""
|
|
Compute the ideal generated by the union of ``self`` and ``J``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1)
|
|
True
|
|
"""
|
|
self._check_ideal(J)
|
|
return self._union(J)
|
|
|
|
def product(self, J):
|
|
r"""
|
|
Compute the ideal product of ``self`` and ``J``.
|
|
|
|
That is, compute the ideal generated by products `xy`, for `x` an element
|
|
of ``self`` and `y \in J`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import QQ
|
|
>>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y))
|
|
<x*y>
|
|
"""
|
|
self._check_ideal(J)
|
|
return self._product(J)
|
|
|
|
def reduce_element(self, x):
|
|
"""
|
|
Reduce the element ``x`` of our ring modulo the ideal ``self``.
|
|
|
|
Here "reduce" has no specific meaning: it could return a unique normal
|
|
form, simplify the expression a bit, or just do nothing.
|
|
"""
|
|
return x
|
|
|
|
def __add__(self, e):
|
|
if not isinstance(e, Ideal):
|
|
R = self.ring.quotient_ring(self)
|
|
if isinstance(e, R.dtype):
|
|
return e
|
|
if isinstance(e, R.ring.dtype):
|
|
return R(e)
|
|
return R.convert(e)
|
|
self._check_ideal(e)
|
|
return self.union(e)
|
|
|
|
__radd__ = __add__
|
|
|
|
def __mul__(self, e):
|
|
if not isinstance(e, Ideal):
|
|
try:
|
|
e = self.ring.ideal(e)
|
|
except CoercionFailed:
|
|
return NotImplemented
|
|
self._check_ideal(e)
|
|
return self.product(e)
|
|
|
|
__rmul__ = __mul__
|
|
|
|
def _zeroth_power(self):
|
|
return self.ring.ideal(1)
|
|
|
|
def _first_power(self):
|
|
# Raising to any power but 1 returns a new instance. So we mult by 1
|
|
# here so that the first power is no exception.
|
|
return self * 1
|
|
|
|
def __eq__(self, e):
|
|
if not isinstance(e, Ideal) or e.ring != self.ring:
|
|
return False
|
|
return self._equals(e)
|
|
|
|
def __ne__(self, e):
|
|
return not (self == e)
|
|
|
|
|
|
class ModuleImplementedIdeal(Ideal):
|
|
"""
|
|
Ideal implementation relying on the modules code.
|
|
|
|
Attributes:
|
|
|
|
- _module - the underlying module
|
|
"""
|
|
|
|
def __init__(self, ring, module):
|
|
Ideal.__init__(self, ring)
|
|
self._module = module
|
|
|
|
def _contains_elem(self, x):
|
|
return self._module.contains([x])
|
|
|
|
def _contains_ideal(self, J):
|
|
if not isinstance(J, ModuleImplementedIdeal):
|
|
raise NotImplementedError
|
|
return self._module.is_submodule(J._module)
|
|
|
|
def _intersect(self, J):
|
|
if not isinstance(J, ModuleImplementedIdeal):
|
|
raise NotImplementedError
|
|
return self.__class__(self.ring, self._module.intersect(J._module))
|
|
|
|
def _quotient(self, J, **opts):
|
|
if not isinstance(J, ModuleImplementedIdeal):
|
|
raise NotImplementedError
|
|
return self._module.module_quotient(J._module, **opts)
|
|
|
|
def _union(self, J):
|
|
if not isinstance(J, ModuleImplementedIdeal):
|
|
raise NotImplementedError
|
|
return self.__class__(self.ring, self._module.union(J._module))
|
|
|
|
@property
|
|
def gens(self):
|
|
"""
|
|
Return generators for ``self``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import QQ
|
|
>>> from sympy.abc import x, y
|
|
>>> list(QQ.old_poly_ring(x, y).ideal(x, y, x**2 + y).gens)
|
|
[x, y, x**2 + y]
|
|
"""
|
|
return (x[0] for x in self._module.gens)
|
|
|
|
def is_zero(self):
|
|
"""
|
|
Return True if ``self`` is the zero ideal.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> QQ.old_poly_ring(x).ideal(x).is_zero()
|
|
False
|
|
>>> QQ.old_poly_ring(x).ideal().is_zero()
|
|
True
|
|
"""
|
|
return self._module.is_zero()
|
|
|
|
def is_whole_ring(self):
|
|
"""
|
|
Return True if ``self`` is the whole ring, i.e. one generator is a unit.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ, ilex
|
|
>>> QQ.old_poly_ring(x).ideal(x).is_whole_ring()
|
|
False
|
|
>>> QQ.old_poly_ring(x).ideal(3).is_whole_ring()
|
|
True
|
|
>>> QQ.old_poly_ring(x, order=ilex).ideal(2 + x).is_whole_ring()
|
|
True
|
|
"""
|
|
return self._module.is_full_module()
|
|
|
|
def __repr__(self):
|
|
from sympy.printing.str import sstr
|
|
return '<' + ','.join(sstr(x) for [x] in self._module.gens) + '>'
|
|
|
|
# NOTE this is the only method using the fact that the module is a SubModule
|
|
def _product(self, J):
|
|
if not isinstance(J, ModuleImplementedIdeal):
|
|
raise NotImplementedError
|
|
return self.__class__(self.ring, self._module.submodule(
|
|
*[[x*y] for [x] in self._module.gens for [y] in J._module.gens]))
|
|
|
|
def in_terms_of_generators(self, e):
|
|
"""
|
|
Express ``e`` in terms of the generators of ``self``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> I = QQ.old_poly_ring(x).ideal(x**2 + 1, x)
|
|
>>> I.in_terms_of_generators(1)
|
|
[1, -x]
|
|
"""
|
|
return self._module.in_terms_of_generators([e])
|
|
|
|
def reduce_element(self, x, **options):
|
|
return self._module.reduce_element([x], **options)[0]
|