Traktor/myenv/Lib/site-packages/sympy/polys/domains/gaussiandomains.py
2024-05-26 05:12:46 +02:00

646 lines
18 KiB
Python

"""Domains of Gaussian type."""
from sympy.core.numbers import I
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.domains.integerring import ZZ
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.algebraicfield import AlgebraicField
from sympy.polys.domains.domain import Domain
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.field import Field
from sympy.polys.domains.ring import Ring
class GaussianElement(DomainElement):
"""Base class for elements of Gaussian type domains."""
base: Domain
_parent: Domain
__slots__ = ('x', 'y')
def __new__(cls, x, y=0):
conv = cls.base.convert
return cls.new(conv(x), conv(y))
@classmethod
def new(cls, x, y):
"""Create a new GaussianElement of the same domain."""
obj = super().__new__(cls)
obj.x = x
obj.y = y
return obj
def parent(self):
"""The domain that this is an element of (ZZ_I or QQ_I)"""
return self._parent
def __hash__(self):
return hash((self.x, self.y))
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.x == other.x and self.y == other.y
else:
return NotImplemented
def __lt__(self, other):
if not isinstance(other, GaussianElement):
return NotImplemented
return [self.y, self.x] < [other.y, other.x]
def __pos__(self):
return self
def __neg__(self):
return self.new(-self.x, -self.y)
def __repr__(self):
return "%s(%s, %s)" % (self._parent.rep, self.x, self.y)
def __str__(self):
return str(self._parent.to_sympy(self))
@classmethod
def _get_xy(cls, other):
if not isinstance(other, cls):
try:
other = cls._parent.convert(other)
except CoercionFailed:
return None, None
return other.x, other.y
def __add__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(self.x + x, self.y + y)
else:
return NotImplemented
__radd__ = __add__
def __sub__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(self.x - x, self.y - y)
else:
return NotImplemented
def __rsub__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(x - self.x, y - self.y)
else:
return NotImplemented
def __mul__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(self.x*x - self.y*y, self.x*y + self.y*x)
else:
return NotImplemented
__rmul__ = __mul__
def __pow__(self, exp):
if exp == 0:
return self.new(1, 0)
if exp < 0:
self, exp = 1/self, -exp
if exp == 1:
return self
pow2 = self
prod = self if exp % 2 else self._parent.one
exp //= 2
while exp:
pow2 *= pow2
if exp % 2:
prod *= pow2
exp //= 2
return prod
def __bool__(self):
return bool(self.x) or bool(self.y)
def quadrant(self):
"""Return quadrant index 0-3.
0 is included in quadrant 0.
"""
if self.y > 0:
return 0 if self.x > 0 else 1
elif self.y < 0:
return 2 if self.x < 0 else 3
else:
return 0 if self.x >= 0 else 2
def __rdivmod__(self, other):
try:
other = self._parent.convert(other)
except CoercionFailed:
return NotImplemented
else:
return other.__divmod__(self)
def __rtruediv__(self, other):
try:
other = QQ_I.convert(other)
except CoercionFailed:
return NotImplemented
else:
return other.__truediv__(self)
def __floordiv__(self, other):
qr = self.__divmod__(other)
return qr if qr is NotImplemented else qr[0]
def __rfloordiv__(self, other):
qr = self.__rdivmod__(other)
return qr if qr is NotImplemented else qr[0]
def __mod__(self, other):
qr = self.__divmod__(other)
return qr if qr is NotImplemented else qr[1]
def __rmod__(self, other):
qr = self.__rdivmod__(other)
return qr if qr is NotImplemented else qr[1]
class GaussianInteger(GaussianElement):
"""Gaussian integer: domain element for :ref:`ZZ_I`
>>> from sympy import ZZ_I
>>> z = ZZ_I(2, 3)
>>> z
(2 + 3*I)
>>> type(z)
<class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>
"""
base = ZZ
def __truediv__(self, other):
"""Return a Gaussian rational."""
return QQ_I.convert(self)/other
def __divmod__(self, other):
if not other:
raise ZeroDivisionError('divmod({}, 0)'.format(self))
x, y = self._get_xy(other)
if x is None:
return NotImplemented
# multiply self and other by x - I*y
# self/other == (a + I*b)/c
a, b = self.x*x + self.y*y, -self.x*y + self.y*x
c = x*x + y*y
# find integers qx and qy such that
# |a - qx*c| <= c/2 and |b - qy*c| <= c/2
qx = (2*a + c) // (2*c) # -c <= 2*a - qx*2*c < c
qy = (2*b + c) // (2*c)
q = GaussianInteger(qx, qy)
# |self/other - q| < 1 since
# |a/c - qx|**2 + |b/c - qy|**2 <= 1/4 + 1/4 < 1
return q, self - q*other # |r| < |other|
class GaussianRational(GaussianElement):
"""Gaussian rational: domain element for :ref:`QQ_I`
>>> from sympy import QQ_I, QQ
>>> z = QQ_I(QQ(2, 3), QQ(4, 5))
>>> z
(2/3 + 4/5*I)
>>> type(z)
<class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
"""
base = QQ
def __truediv__(self, other):
"""Return a Gaussian rational."""
if not other:
raise ZeroDivisionError('{} / 0'.format(self))
x, y = self._get_xy(other)
if x is None:
return NotImplemented
c = x*x + y*y
return GaussianRational((self.x*x + self.y*y)/c,
(-self.x*y + self.y*x)/c)
def __divmod__(self, other):
try:
other = self._parent.convert(other)
except CoercionFailed:
return NotImplemented
if not other:
raise ZeroDivisionError('{} % 0'.format(self))
else:
return self/other, QQ_I.zero
class GaussianDomain():
"""Base class for Gaussian domains."""
dom = None # type: Domain
is_Numerical = True
is_Exact = True
has_assoc_Ring = True
has_assoc_Field = True
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
conv = self.dom.to_sympy
return conv(a.x) + I*conv(a.y)
def from_sympy(self, a):
"""Convert a SymPy object to ``self.dtype``."""
r, b = a.as_coeff_Add()
x = self.dom.from_sympy(r) # may raise CoercionFailed
if not b:
return self.new(x, 0)
r, b = b.as_coeff_Mul()
y = self.dom.from_sympy(r)
if b is I:
return self.new(x, y)
else:
raise CoercionFailed("{} is not Gaussian".format(a))
def inject(self, *gens):
"""Inject generators into this domain. """
return self.poly_ring(*gens)
def canonical_unit(self, d):
unit = self.units[-d.quadrant()] # - for inverse power
return unit
def is_negative(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def is_positive(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def is_nonnegative(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def is_nonpositive(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY mpz to ``self.dtype``."""
return K1(a)
def from_ZZ(K1, a, K0):
"""Convert a ZZ_python element to ``self.dtype``."""
return K1(a)
def from_ZZ_python(K1, a, K0):
"""Convert a ZZ_python element to ``self.dtype``."""
return K1(a)
def from_QQ(K1, a, K0):
"""Convert a GMPY mpq to ``self.dtype``."""
return K1(a)
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY mpq to ``self.dtype``."""
return K1(a)
def from_QQ_python(K1, a, K0):
"""Convert a QQ_python element to ``self.dtype``."""
return K1(a)
def from_AlgebraicField(K1, a, K0):
"""Convert an element from ZZ<I> or QQ<I> to ``self.dtype``."""
if K0.ext.args[0] == I:
return K1.from_sympy(K0.to_sympy(a))
class GaussianIntegerRing(GaussianDomain, Ring):
r"""Ring of Gaussian integers ``ZZ_I``
The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]`
as a :py:class:`~.Domain` in the domain system (see
:ref:`polys-domainsintro`).
By default a :py:class:`~.Poly` created from an expression with
coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`)
will have the domain :ref:`ZZ_I`.
>>> from sympy import Poly, Symbol, I
>>> x = Symbol('x')
>>> p = Poly(x**2 + I)
>>> p
Poly(x**2 + I, x, domain='ZZ_I')
>>> p.domain
ZZ_I
The :ref:`ZZ_I` domain can be used to factorise polynomials that are
reducible over the Gaussian integers.
>>> from sympy import factor
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, domain='ZZ_I')
(x - I)*(x + I)
The corresponding `field of fractions`_ is the domain of the Gaussian
rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_
of :ref:`QQ_I`.
>>> from sympy import ZZ_I, QQ_I
>>> ZZ_I.get_field()
QQ_I
>>> QQ_I.get_ring()
ZZ_I
When using the domain directly :ref:`ZZ_I` can be used as a constructor.
>>> ZZ_I(3, 4)
(3 + 4*I)
>>> ZZ_I(5)
(5 + 0*I)
The domain elements of :ref:`ZZ_I` are instances of
:py:class:`~.GaussianInteger` which support the rings operations
``+,-,*,**``.
>>> z1 = ZZ_I(5, 1)
>>> z2 = ZZ_I(2, 3)
>>> z1
(5 + 1*I)
>>> z2
(2 + 3*I)
>>> z1 + z2
(7 + 4*I)
>>> z1 * z2
(7 + 17*I)
>>> z1 ** 2
(24 + 10*I)
Both floor (``//``) and modulo (``%``) division work with
:py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method).
>>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
>>> z3 // z4 # floor division
(1 + -1*I)
>>> z3 % z4 # modulo division (remainder)
(1 + -2*I)
>>> (z3//z4)*z4 + z3%z4 == z3
True
True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The
:py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when
exact division is possible.
>>> z1 / z2
(1 + -1*I)
>>> ZZ_I.exquo(z1, z2)
(1 + -1*I)
>>> z3 / z4
(1/2 + -3/2*I)
>>> ZZ_I.exquo(z3, z4)
Traceback (most recent call last):
...
ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I
The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any
two elements.
>>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
(2 + 0*I)
>>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
(2 + 1*I)
.. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer
.. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor
"""
dom = ZZ
dtype = GaussianInteger
zero = dtype(ZZ(0), ZZ(0))
one = dtype(ZZ(1), ZZ(0))
imag_unit = dtype(ZZ(0), ZZ(1))
units = (one, imag_unit, -one, -imag_unit) # powers of i
rep = 'ZZ_I'
is_GaussianRing = True
is_ZZ_I = True
def __init__(self): # override Domain.__init__
"""For constructing ZZ_I."""
def get_ring(self):
"""Returns a ring associated with ``self``. """
return self
def get_field(self):
"""Returns a field associated with ``self``. """
return QQ_I
def normalize(self, d, *args):
"""Return first quadrant element associated with ``d``.
Also multiply the other arguments by the same power of i.
"""
unit = self.canonical_unit(d)
d *= unit
args = tuple(a*unit for a in args)
return (d,) + args if args else d
def gcd(self, a, b):
"""Greatest common divisor of a and b over ZZ_I."""
while b:
a, b = b, a % b
return self.normalize(a)
def lcm(self, a, b):
"""Least common multiple of a and b over ZZ_I."""
return (a * b) // self.gcd(a, b)
def from_GaussianIntegerRing(K1, a, K0):
"""Convert a ZZ_I element to ZZ_I."""
return a
def from_GaussianRationalField(K1, a, K0):
"""Convert a QQ_I element to ZZ_I."""
return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))
ZZ_I = GaussianInteger._parent = GaussianIntegerRing()
class GaussianRationalField(GaussianDomain, Field):
r"""Field of Gaussian rationals ``QQ_I``
The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
as a :py:class:`~.Domain` in the domain system (see
:ref:`polys-domainsintro`).
By default a :py:class:`~.Poly` created from an expression with
coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
will have the domain :ref:`QQ_I`.
>>> from sympy import Poly, Symbol, I
>>> x = Symbol('x')
>>> p = Poly(x**2 + I/2)
>>> p
Poly(x**2 + I/2, x, domain='QQ_I')
>>> p.domain
QQ_I
The polys option ``gaussian=True`` can be used to specify that the domain
should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
all integers.
>>> Poly(x**2)
Poly(x**2, x, domain='ZZ')
>>> Poly(x**2 + I)
Poly(x**2 + I, x, domain='ZZ_I')
>>> Poly(x**2/2)
Poly(1/2*x**2, x, domain='QQ')
>>> Poly(x**2, gaussian=True)
Poly(x**2, x, domain='QQ_I')
>>> Poly(x**2 + I, gaussian=True)
Poly(x**2 + I, x, domain='QQ_I')
>>> Poly(x**2/2, gaussian=True)
Poly(1/2*x**2, x, domain='QQ_I')
The :ref:`QQ_I` domain can be used to factorise polynomials that are
reducible over the Gaussian rationals.
>>> from sympy import factor, QQ_I
>>> factor(x**2/4 + 1)
(x**2 + 4)/4
>>> factor(x**2/4 + 1, domain='QQ_I')
(x - 2*I)*(x + 2*I)/4
>>> factor(x**2/4 + 1, domain=QQ_I)
(x - 2*I)*(x + 2*I)/4
It is also possible to specify the :ref:`QQ_I` domain explicitly with
polys functions like :py:func:`~.apart`.
>>> from sympy import apart
>>> apart(1/(1 + x**2))
1/(x**2 + 1)
>>> apart(1/(1 + x**2), domain=QQ_I)
I/(2*(x + I)) - I/(2*(x - I))
The corresponding `ring of integers`_ is the domain of the Gaussian
integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
of :ref:`ZZ_I`.
>>> from sympy import ZZ_I, QQ_I, QQ
>>> ZZ_I.get_field()
QQ_I
>>> QQ_I.get_ring()
ZZ_I
When using the domain directly :ref:`QQ_I` can be used as a constructor.
>>> QQ_I(3, 4)
(3 + 4*I)
>>> QQ_I(5)
(5 + 0*I)
>>> QQ_I(QQ(2, 3), QQ(4, 5))
(2/3 + 4/5*I)
The domain elements of :ref:`QQ_I` are instances of
:py:class:`~.GaussianRational` which support the field operations
``+,-,*,**,/``.
>>> z1 = QQ_I(5, 1)
>>> z2 = QQ_I(2, QQ(1, 2))
>>> z1
(5 + 1*I)
>>> z2
(2 + 1/2*I)
>>> z1 + z2
(7 + 3/2*I)
>>> z1 * z2
(19/2 + 9/2*I)
>>> z2 ** 2
(15/4 + 2*I)
True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
is always exact.
>>> z1 / z2
(42/17 + -2/17*I)
>>> QQ_I.exquo(z1, z2)
(42/17 + -2/17*I)
>>> z1 == (z1/z2)*z2
True
Both floor (``//``) and modulo (``%``) division can be used with
:py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
but division is always exact so there is no remainder.
>>> z1 // z2
(42/17 + -2/17*I)
>>> z1 % z2
(0 + 0*I)
>>> QQ_I.div(z1, z2)
((42/17 + -2/17*I), (0 + 0*I))
>>> (z1//z2)*z2 + z1%z2 == z1
True
.. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
"""
dom = QQ
dtype = GaussianRational
zero = dtype(QQ(0), QQ(0))
one = dtype(QQ(1), QQ(0))
imag_unit = dtype(QQ(0), QQ(1))
units = (one, imag_unit, -one, -imag_unit) # powers of i
rep = 'QQ_I'
is_GaussianField = True
is_QQ_I = True
def __init__(self): # override Domain.__init__
"""For constructing QQ_I."""
def get_ring(self):
"""Returns a ring associated with ``self``. """
return ZZ_I
def get_field(self):
"""Returns a field associated with ``self``. """
return self
def as_AlgebraicField(self):
"""Get equivalent domain as an ``AlgebraicField``. """
return AlgebraicField(self.dom, I)
def numer(self, a):
"""Get the numerator of ``a``."""
ZZ_I = self.get_ring()
return ZZ_I.convert(a * self.denom(a))
def denom(self, a):
"""Get the denominator of ``a``."""
ZZ = self.dom.get_ring()
QQ = self.dom
ZZ_I = self.get_ring()
denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y))
return ZZ_I(denom_ZZ, ZZ.zero)
def from_GaussianIntegerRing(K1, a, K0):
"""Convert a ZZ_I element to QQ_I."""
return K1.new(a.x, a.y)
def from_GaussianRationalField(K1, a, K0):
"""Convert a QQ_I element to QQ_I."""
return a
QQ_I = GaussianRational._parent = GaussianRationalField()