202 lines
5.7 KiB
Python
202 lines
5.7 KiB
Python
"""Implementation of :class:`QuotientRing` class."""
|
|
|
|
|
|
from sympy.polys.agca.modules import FreeModuleQuotientRing
|
|
from sympy.polys.domains.ring import Ring
|
|
from sympy.polys.polyerrors import NotReversible, CoercionFailed
|
|
from sympy.utilities import public
|
|
|
|
# TODO
|
|
# - successive quotients (when quotient ideals are implemented)
|
|
# - poly rings over quotients?
|
|
# - division by non-units in integral domains?
|
|
|
|
@public
|
|
class QuotientRingElement:
|
|
"""
|
|
Class representing elements of (commutative) quotient rings.
|
|
|
|
Attributes:
|
|
|
|
- ring - containing ring
|
|
- data - element of ring.ring (i.e. base ring) representing self
|
|
"""
|
|
|
|
def __init__(self, ring, data):
|
|
self.ring = ring
|
|
self.data = data
|
|
|
|
def __str__(self):
|
|
from sympy.printing.str import sstr
|
|
return sstr(self.data) + " + " + str(self.ring.base_ideal)
|
|
|
|
__repr__ = __str__
|
|
|
|
def __bool__(self):
|
|
return not self.ring.is_zero(self)
|
|
|
|
def __add__(self, om):
|
|
if not isinstance(om, self.__class__) or om.ring != self.ring:
|
|
try:
|
|
om = self.ring.convert(om)
|
|
except (NotImplementedError, CoercionFailed):
|
|
return NotImplemented
|
|
return self.ring(self.data + om.data)
|
|
|
|
__radd__ = __add__
|
|
|
|
def __neg__(self):
|
|
return self.ring(self.data*self.ring.ring.convert(-1))
|
|
|
|
def __sub__(self, om):
|
|
return self.__add__(-om)
|
|
|
|
def __rsub__(self, om):
|
|
return (-self).__add__(om)
|
|
|
|
def __mul__(self, o):
|
|
if not isinstance(o, self.__class__):
|
|
try:
|
|
o = self.ring.convert(o)
|
|
except (NotImplementedError, CoercionFailed):
|
|
return NotImplemented
|
|
return self.ring(self.data*o.data)
|
|
|
|
__rmul__ = __mul__
|
|
|
|
def __rtruediv__(self, o):
|
|
return self.ring.revert(self)*o
|
|
|
|
def __truediv__(self, o):
|
|
if not isinstance(o, self.__class__):
|
|
try:
|
|
o = self.ring.convert(o)
|
|
except (NotImplementedError, CoercionFailed):
|
|
return NotImplemented
|
|
return self.ring.revert(o)*self
|
|
|
|
def __pow__(self, oth):
|
|
if oth < 0:
|
|
return self.ring.revert(self) ** -oth
|
|
return self.ring(self.data ** oth)
|
|
|
|
def __eq__(self, om):
|
|
if not isinstance(om, self.__class__) or om.ring != self.ring:
|
|
return False
|
|
return self.ring.is_zero(self - om)
|
|
|
|
def __ne__(self, om):
|
|
return not self == om
|
|
|
|
|
|
class QuotientRing(Ring):
|
|
"""
|
|
Class representing (commutative) quotient rings.
|
|
|
|
You should not usually instantiate this by hand, instead use the constructor
|
|
from the base ring in the construction.
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> I = QQ.old_poly_ring(x).ideal(x**3 + 1)
|
|
>>> QQ.old_poly_ring(x).quotient_ring(I)
|
|
QQ[x]/<x**3 + 1>
|
|
|
|
Shorter versions are possible:
|
|
|
|
>>> QQ.old_poly_ring(x)/I
|
|
QQ[x]/<x**3 + 1>
|
|
|
|
>>> QQ.old_poly_ring(x)/[x**3 + 1]
|
|
QQ[x]/<x**3 + 1>
|
|
|
|
Attributes:
|
|
|
|
- ring - the base ring
|
|
- base_ideal - the ideal used to form the quotient
|
|
"""
|
|
|
|
has_assoc_Ring = True
|
|
has_assoc_Field = False
|
|
dtype = QuotientRingElement
|
|
|
|
def __init__(self, ring, ideal):
|
|
if not ideal.ring == ring:
|
|
raise ValueError('Ideal must belong to %s, got %s' % (ring, ideal))
|
|
self.ring = ring
|
|
self.base_ideal = ideal
|
|
self.zero = self(self.ring.zero)
|
|
self.one = self(self.ring.one)
|
|
|
|
def __str__(self):
|
|
return str(self.ring) + "/" + str(self.base_ideal)
|
|
|
|
def __hash__(self):
|
|
return hash((self.__class__.__name__, self.dtype, self.ring, self.base_ideal))
|
|
|
|
def new(self, a):
|
|
"""Construct an element of ``self`` domain from ``a``. """
|
|
if not isinstance(a, self.ring.dtype):
|
|
a = self.ring(a)
|
|
# TODO optionally disable reduction?
|
|
return self.dtype(self, self.base_ideal.reduce_element(a))
|
|
|
|
def __eq__(self, other):
|
|
"""Returns ``True`` if two domains are equivalent. """
|
|
return isinstance(other, QuotientRing) and \
|
|
self.ring == other.ring and self.base_ideal == other.base_ideal
|
|
|
|
def from_ZZ(K1, a, K0):
|
|
"""Convert a Python ``int`` object to ``dtype``. """
|
|
return K1(K1.ring.convert(a, K0))
|
|
|
|
from_ZZ_python = from_ZZ
|
|
from_QQ_python = from_ZZ_python
|
|
from_ZZ_gmpy = from_ZZ_python
|
|
from_QQ_gmpy = from_ZZ_python
|
|
from_RealField = from_ZZ_python
|
|
from_GlobalPolynomialRing = from_ZZ_python
|
|
from_FractionField = from_ZZ_python
|
|
|
|
def from_sympy(self, a):
|
|
return self(self.ring.from_sympy(a))
|
|
|
|
def to_sympy(self, a):
|
|
return self.ring.to_sympy(a.data)
|
|
|
|
def from_QuotientRing(self, a, K0):
|
|
if K0 == self:
|
|
return a
|
|
|
|
def poly_ring(self, *gens):
|
|
"""Returns a polynomial ring, i.e. ``K[X]``. """
|
|
raise NotImplementedError('nested domains not allowed')
|
|
|
|
def frac_field(self, *gens):
|
|
"""Returns a fraction field, i.e. ``K(X)``. """
|
|
raise NotImplementedError('nested domains not allowed')
|
|
|
|
def revert(self, a):
|
|
"""
|
|
Compute a**(-1), if possible.
|
|
"""
|
|
I = self.ring.ideal(a.data) + self.base_ideal
|
|
try:
|
|
return self(I.in_terms_of_generators(1)[0])
|
|
except ValueError: # 1 not in I
|
|
raise NotReversible('%s not a unit in %r' % (a, self))
|
|
|
|
def is_zero(self, a):
|
|
return self.base_ideal.contains(a.data)
|
|
|
|
def free_module(self, rank):
|
|
"""
|
|
Generate a free module of rank ``rank`` over ``self``.
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import QQ
|
|
>>> (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
|
|
(QQ[x]/<x**2 + 1>)**2
|
|
"""
|
|
return FreeModuleQuotientRing(self, rank)
|