355 lines
12 KiB
Python
355 lines
12 KiB
Python
"""
|
|
Mathematica code printer
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
from typing import Any
|
|
|
|
from sympy.core import Basic, Expr, Float
|
|
from sympy.core.sorting import default_sort_key
|
|
|
|
from sympy.printing.codeprinter import CodePrinter
|
|
from sympy.printing.precedence import precedence
|
|
|
|
# Used in MCodePrinter._print_Function(self)
|
|
known_functions = {
|
|
"exp": [(lambda x: True, "Exp")],
|
|
"log": [(lambda x: True, "Log")],
|
|
"sin": [(lambda x: True, "Sin")],
|
|
"cos": [(lambda x: True, "Cos")],
|
|
"tan": [(lambda x: True, "Tan")],
|
|
"cot": [(lambda x: True, "Cot")],
|
|
"sec": [(lambda x: True, "Sec")],
|
|
"csc": [(lambda x: True, "Csc")],
|
|
"asin": [(lambda x: True, "ArcSin")],
|
|
"acos": [(lambda x: True, "ArcCos")],
|
|
"atan": [(lambda x: True, "ArcTan")],
|
|
"acot": [(lambda x: True, "ArcCot")],
|
|
"asec": [(lambda x: True, "ArcSec")],
|
|
"acsc": [(lambda x: True, "ArcCsc")],
|
|
"atan2": [(lambda *x: True, "ArcTan")],
|
|
"sinh": [(lambda x: True, "Sinh")],
|
|
"cosh": [(lambda x: True, "Cosh")],
|
|
"tanh": [(lambda x: True, "Tanh")],
|
|
"coth": [(lambda x: True, "Coth")],
|
|
"sech": [(lambda x: True, "Sech")],
|
|
"csch": [(lambda x: True, "Csch")],
|
|
"asinh": [(lambda x: True, "ArcSinh")],
|
|
"acosh": [(lambda x: True, "ArcCosh")],
|
|
"atanh": [(lambda x: True, "ArcTanh")],
|
|
"acoth": [(lambda x: True, "ArcCoth")],
|
|
"asech": [(lambda x: True, "ArcSech")],
|
|
"acsch": [(lambda x: True, "ArcCsch")],
|
|
"sinc": [(lambda x: True, "Sinc")],
|
|
"conjugate": [(lambda x: True, "Conjugate")],
|
|
"Max": [(lambda *x: True, "Max")],
|
|
"Min": [(lambda *x: True, "Min")],
|
|
"erf": [(lambda x: True, "Erf")],
|
|
"erf2": [(lambda *x: True, "Erf")],
|
|
"erfc": [(lambda x: True, "Erfc")],
|
|
"erfi": [(lambda x: True, "Erfi")],
|
|
"erfinv": [(lambda x: True, "InverseErf")],
|
|
"erfcinv": [(lambda x: True, "InverseErfc")],
|
|
"erf2inv": [(lambda *x: True, "InverseErf")],
|
|
"expint": [(lambda *x: True, "ExpIntegralE")],
|
|
"Ei": [(lambda x: True, "ExpIntegralEi")],
|
|
"fresnelc": [(lambda x: True, "FresnelC")],
|
|
"fresnels": [(lambda x: True, "FresnelS")],
|
|
"gamma": [(lambda x: True, "Gamma")],
|
|
"uppergamma": [(lambda *x: True, "Gamma")],
|
|
"polygamma": [(lambda *x: True, "PolyGamma")],
|
|
"loggamma": [(lambda x: True, "LogGamma")],
|
|
"beta": [(lambda *x: True, "Beta")],
|
|
"Ci": [(lambda x: True, "CosIntegral")],
|
|
"Si": [(lambda x: True, "SinIntegral")],
|
|
"Chi": [(lambda x: True, "CoshIntegral")],
|
|
"Shi": [(lambda x: True, "SinhIntegral")],
|
|
"li": [(lambda x: True, "LogIntegral")],
|
|
"factorial": [(lambda x: True, "Factorial")],
|
|
"factorial2": [(lambda x: True, "Factorial2")],
|
|
"subfactorial": [(lambda x: True, "Subfactorial")],
|
|
"catalan": [(lambda x: True, "CatalanNumber")],
|
|
"harmonic": [(lambda *x: True, "HarmonicNumber")],
|
|
"lucas": [(lambda x: True, "LucasL")],
|
|
"RisingFactorial": [(lambda *x: True, "Pochhammer")],
|
|
"FallingFactorial": [(lambda *x: True, "FactorialPower")],
|
|
"laguerre": [(lambda *x: True, "LaguerreL")],
|
|
"assoc_laguerre": [(lambda *x: True, "LaguerreL")],
|
|
"hermite": [(lambda *x: True, "HermiteH")],
|
|
"jacobi": [(lambda *x: True, "JacobiP")],
|
|
"gegenbauer": [(lambda *x: True, "GegenbauerC")],
|
|
"chebyshevt": [(lambda *x: True, "ChebyshevT")],
|
|
"chebyshevu": [(lambda *x: True, "ChebyshevU")],
|
|
"legendre": [(lambda *x: True, "LegendreP")],
|
|
"assoc_legendre": [(lambda *x: True, "LegendreP")],
|
|
"mathieuc": [(lambda *x: True, "MathieuC")],
|
|
"mathieus": [(lambda *x: True, "MathieuS")],
|
|
"mathieucprime": [(lambda *x: True, "MathieuCPrime")],
|
|
"mathieusprime": [(lambda *x: True, "MathieuSPrime")],
|
|
"stieltjes": [(lambda x: True, "StieltjesGamma")],
|
|
"elliptic_e": [(lambda *x: True, "EllipticE")],
|
|
"elliptic_f": [(lambda *x: True, "EllipticE")],
|
|
"elliptic_k": [(lambda x: True, "EllipticK")],
|
|
"elliptic_pi": [(lambda *x: True, "EllipticPi")],
|
|
"zeta": [(lambda *x: True, "Zeta")],
|
|
"dirichlet_eta": [(lambda x: True, "DirichletEta")],
|
|
"riemann_xi": [(lambda x: True, "RiemannXi")],
|
|
"besseli": [(lambda *x: True, "BesselI")],
|
|
"besselj": [(lambda *x: True, "BesselJ")],
|
|
"besselk": [(lambda *x: True, "BesselK")],
|
|
"bessely": [(lambda *x: True, "BesselY")],
|
|
"hankel1": [(lambda *x: True, "HankelH1")],
|
|
"hankel2": [(lambda *x: True, "HankelH2")],
|
|
"airyai": [(lambda x: True, "AiryAi")],
|
|
"airybi": [(lambda x: True, "AiryBi")],
|
|
"airyaiprime": [(lambda x: True, "AiryAiPrime")],
|
|
"airybiprime": [(lambda x: True, "AiryBiPrime")],
|
|
"polylog": [(lambda *x: True, "PolyLog")],
|
|
"lerchphi": [(lambda *x: True, "LerchPhi")],
|
|
"gcd": [(lambda *x: True, "GCD")],
|
|
"lcm": [(lambda *x: True, "LCM")],
|
|
"jn": [(lambda *x: True, "SphericalBesselJ")],
|
|
"yn": [(lambda *x: True, "SphericalBesselY")],
|
|
"hyper": [(lambda *x: True, "HypergeometricPFQ")],
|
|
"meijerg": [(lambda *x: True, "MeijerG")],
|
|
"appellf1": [(lambda *x: True, "AppellF1")],
|
|
"DiracDelta": [(lambda x: True, "DiracDelta")],
|
|
"Heaviside": [(lambda x: True, "HeavisideTheta")],
|
|
"KroneckerDelta": [(lambda *x: True, "KroneckerDelta")],
|
|
"sqrt": [(lambda x: True, "Sqrt")], # For automatic rewrites
|
|
}
|
|
|
|
|
|
class MCodePrinter(CodePrinter):
|
|
"""A printer to convert Python expressions to
|
|
strings of the Wolfram's Mathematica code
|
|
"""
|
|
printmethod = "_mcode"
|
|
language = "Wolfram Language"
|
|
|
|
_default_settings: dict[str, Any] = {
|
|
'order': None,
|
|
'full_prec': 'auto',
|
|
'precision': 15,
|
|
'user_functions': {},
|
|
'human': True,
|
|
'allow_unknown_functions': False,
|
|
}
|
|
|
|
_number_symbols: set[tuple[Expr, Float]] = set()
|
|
_not_supported: set[Basic] = set()
|
|
|
|
def __init__(self, settings={}):
|
|
"""Register function mappings supplied by user"""
|
|
CodePrinter.__init__(self, settings)
|
|
self.known_functions = dict(known_functions)
|
|
userfuncs = settings.get('user_functions', {}).copy()
|
|
for k, v in userfuncs.items():
|
|
if not isinstance(v, list):
|
|
userfuncs[k] = [(lambda *x: True, v)]
|
|
self.known_functions.update(userfuncs)
|
|
|
|
def _format_code(self, lines):
|
|
return lines
|
|
|
|
def _print_Pow(self, expr):
|
|
PREC = precedence(expr)
|
|
return '%s^%s' % (self.parenthesize(expr.base, PREC),
|
|
self.parenthesize(expr.exp, PREC))
|
|
|
|
def _print_Mul(self, expr):
|
|
PREC = precedence(expr)
|
|
c, nc = expr.args_cnc()
|
|
res = super()._print_Mul(expr.func(*c))
|
|
if nc:
|
|
res += '*'
|
|
res += '**'.join(self.parenthesize(a, PREC) for a in nc)
|
|
return res
|
|
|
|
def _print_Relational(self, expr):
|
|
lhs_code = self._print(expr.lhs)
|
|
rhs_code = self._print(expr.rhs)
|
|
op = expr.rel_op
|
|
return "{} {} {}".format(lhs_code, op, rhs_code)
|
|
|
|
# Primitive numbers
|
|
def _print_Zero(self, expr):
|
|
return '0'
|
|
|
|
def _print_One(self, expr):
|
|
return '1'
|
|
|
|
def _print_NegativeOne(self, expr):
|
|
return '-1'
|
|
|
|
def _print_Half(self, expr):
|
|
return '1/2'
|
|
|
|
def _print_ImaginaryUnit(self, expr):
|
|
return 'I'
|
|
|
|
|
|
# Infinity and invalid numbers
|
|
def _print_Infinity(self, expr):
|
|
return 'Infinity'
|
|
|
|
def _print_NegativeInfinity(self, expr):
|
|
return '-Infinity'
|
|
|
|
def _print_ComplexInfinity(self, expr):
|
|
return 'ComplexInfinity'
|
|
|
|
def _print_NaN(self, expr):
|
|
return 'Indeterminate'
|
|
|
|
|
|
# Mathematical constants
|
|
def _print_Exp1(self, expr):
|
|
return 'E'
|
|
|
|
def _print_Pi(self, expr):
|
|
return 'Pi'
|
|
|
|
def _print_GoldenRatio(self, expr):
|
|
return 'GoldenRatio'
|
|
|
|
def _print_TribonacciConstant(self, expr):
|
|
expanded = expr.expand(func=True)
|
|
PREC = precedence(expr)
|
|
return self.parenthesize(expanded, PREC)
|
|
|
|
def _print_EulerGamma(self, expr):
|
|
return 'EulerGamma'
|
|
|
|
def _print_Catalan(self, expr):
|
|
return 'Catalan'
|
|
|
|
|
|
def _print_list(self, expr):
|
|
return '{' + ', '.join(self.doprint(a) for a in expr) + '}'
|
|
_print_tuple = _print_list
|
|
_print_Tuple = _print_list
|
|
|
|
def _print_ImmutableDenseMatrix(self, expr):
|
|
return self.doprint(expr.tolist())
|
|
|
|
def _print_ImmutableSparseMatrix(self, expr):
|
|
|
|
def print_rule(pos, val):
|
|
return '{} -> {}'.format(
|
|
self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val))
|
|
|
|
def print_data():
|
|
items = sorted(expr.todok().items(), key=default_sort_key)
|
|
return '{' + \
|
|
', '.join(print_rule(k, v) for k, v in items) + \
|
|
'}'
|
|
|
|
def print_dims():
|
|
return self.doprint(expr.shape)
|
|
|
|
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
|
|
|
|
def _print_ImmutableDenseNDimArray(self, expr):
|
|
return self.doprint(expr.tolist())
|
|
|
|
def _print_ImmutableSparseNDimArray(self, expr):
|
|
def print_string_list(string_list):
|
|
return '{' + ', '.join(a for a in string_list) + '}'
|
|
|
|
def to_mathematica_index(*args):
|
|
"""Helper function to change Python style indexing to
|
|
Pathematica indexing.
|
|
|
|
Python indexing (0, 1 ... n-1)
|
|
-> Mathematica indexing (1, 2 ... n)
|
|
"""
|
|
return tuple(i + 1 for i in args)
|
|
|
|
def print_rule(pos, val):
|
|
"""Helper function to print a rule of Mathematica"""
|
|
return '{} -> {}'.format(self.doprint(pos), self.doprint(val))
|
|
|
|
def print_data():
|
|
"""Helper function to print data part of Mathematica
|
|
sparse array.
|
|
|
|
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
|
|
from
|
|
https://reference.wolfram.com/language/ref/SparseArray.html
|
|
|
|
``data`` must be formatted with rule.
|
|
"""
|
|
return print_string_list(
|
|
[print_rule(
|
|
to_mathematica_index(*(expr._get_tuple_index(key))),
|
|
value)
|
|
for key, value in sorted(expr._sparse_array.items())]
|
|
)
|
|
|
|
def print_dims():
|
|
"""Helper function to print dimensions part of Mathematica
|
|
sparse array.
|
|
|
|
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
|
|
from
|
|
https://reference.wolfram.com/language/ref/SparseArray.html
|
|
"""
|
|
return self.doprint(expr.shape)
|
|
|
|
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
|
|
|
|
def _print_Function(self, expr):
|
|
if expr.func.__name__ in self.known_functions:
|
|
cond_mfunc = self.known_functions[expr.func.__name__]
|
|
for cond, mfunc in cond_mfunc:
|
|
if cond(*expr.args):
|
|
return "%s[%s]" % (mfunc, self.stringify(expr.args, ", "))
|
|
elif expr.func.__name__ in self._rewriteable_functions:
|
|
# Simple rewrite to supported function possible
|
|
target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
|
|
if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
|
|
return self._print(expr.rewrite(target_f))
|
|
return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ")
|
|
|
|
_print_MinMaxBase = _print_Function
|
|
|
|
def _print_LambertW(self, expr):
|
|
if len(expr.args) == 1:
|
|
return "ProductLog[{}]".format(self._print(expr.args[0]))
|
|
return "ProductLog[{}, {}]".format(
|
|
self._print(expr.args[1]), self._print(expr.args[0]))
|
|
|
|
def _print_Integral(self, expr):
|
|
if len(expr.variables) == 1 and not expr.limits[0][1:]:
|
|
args = [expr.args[0], expr.variables[0]]
|
|
else:
|
|
args = expr.args
|
|
return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]"
|
|
|
|
def _print_Sum(self, expr):
|
|
return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"
|
|
|
|
def _print_Derivative(self, expr):
|
|
dexpr = expr.expr
|
|
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
|
|
return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]"
|
|
|
|
|
|
def _get_comment(self, text):
|
|
return "(* {} *)".format(text)
|
|
|
|
|
|
def mathematica_code(expr, **settings):
|
|
r"""Converts an expr to a string of the Wolfram Mathematica code
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import mathematica_code as mcode, symbols, sin
|
|
>>> x = symbols('x')
|
|
>>> mcode(sin(x).series(x).removeO())
|
|
'(1/120)*x^5 - 1/6*x^3 + x'
|
|
"""
|
|
return MCodePrinter(settings).doprint(expr)
|