375 lines
12 KiB
Python
375 lines
12 KiB
Python
from __future__ import annotations
|
|
from typing import Any
|
|
|
|
from sympy.testing.pytest import raises, warns_deprecated_sympy
|
|
from sympy.assumptions.ask import Q
|
|
from sympy.core.function import (Function, WildFunction)
|
|
from sympy.core.numbers import (AlgebraicNumber, Float, Integer, Rational)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
|
|
from sympy.core.sympify import sympify
|
|
from sympy.functions.elementary.complexes import Abs
|
|
from sympy.functions.elementary.miscellaneous import (root, sqrt)
|
|
from sympy.functions.elementary.trigonometric import sin
|
|
from sympy.functions.special.delta_functions import Heaviside
|
|
from sympy.logic.boolalg import (false, true)
|
|
from sympy.matrices.dense import (Matrix, ones)
|
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
|
from sympy.matrices.immutable import ImmutableDenseMatrix
|
|
from sympy.combinatorics import Cycle, Permutation
|
|
from sympy.core.symbol import Str
|
|
from sympy.geometry import Point, Ellipse
|
|
from sympy.printing import srepr
|
|
from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly
|
|
from sympy.polys.polyclasses import DMP
|
|
from sympy.polys.agca.extensions import FiniteExtension
|
|
|
|
x, y = symbols('x,y')
|
|
|
|
# eval(srepr(expr)) == expr has to succeed in the right environment. The right
|
|
# environment is the scope of "from sympy import *" for most cases.
|
|
ENV: dict[str, Any] = {"Str": Str}
|
|
exec("from sympy import *", ENV)
|
|
|
|
|
|
def sT(expr, string, import_stmt=None, **kwargs):
|
|
"""
|
|
sT := sreprTest
|
|
|
|
Tests that srepr delivers the expected string and that
|
|
the condition eval(srepr(expr))==expr holds.
|
|
"""
|
|
if import_stmt is None:
|
|
ENV2 = ENV
|
|
else:
|
|
ENV2 = ENV.copy()
|
|
exec(import_stmt, ENV2)
|
|
|
|
assert srepr(expr, **kwargs) == string
|
|
assert eval(string, ENV2) == expr
|
|
|
|
|
|
def test_printmethod():
|
|
class R(Abs):
|
|
def _sympyrepr(self, printer):
|
|
return "foo(%s)" % printer._print(self.args[0])
|
|
assert srepr(R(x)) == "foo(Symbol('x'))"
|
|
|
|
|
|
def test_Add():
|
|
sT(x + y, "Add(Symbol('x'), Symbol('y'))")
|
|
assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))"
|
|
assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))"
|
|
assert srepr(sympify('x + 3 - 2', evaluate=False), order='none') == "Add(Symbol('x'), Integer(3), Mul(Integer(-1), Integer(2)))"
|
|
|
|
|
|
def test_more_than_255_args_issue_10259():
|
|
from sympy.core.add import Add
|
|
from sympy.core.mul import Mul
|
|
for op in (Add, Mul):
|
|
expr = op(*symbols('x:256'))
|
|
assert eval(srepr(expr)) == expr
|
|
|
|
|
|
def test_Function():
|
|
sT(Function("f")(x), "Function('f')(Symbol('x'))")
|
|
# test unapplied Function
|
|
sT(Function('f'), "Function('f')")
|
|
|
|
sT(sin(x), "sin(Symbol('x'))")
|
|
sT(sin, "sin")
|
|
|
|
|
|
def test_Heaviside():
|
|
sT(Heaviside(x), "Heaviside(Symbol('x'))")
|
|
sT(Heaviside(x, 1), "Heaviside(Symbol('x'), Integer(1))")
|
|
|
|
|
|
def test_Geometry():
|
|
sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
|
|
sT(Ellipse(Point(0, 0), 5, 1),
|
|
"Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
|
|
# TODO more tests
|
|
|
|
|
|
def test_Singletons():
|
|
sT(S.Catalan, 'Catalan')
|
|
sT(S.ComplexInfinity, 'zoo')
|
|
sT(S.EulerGamma, 'EulerGamma')
|
|
sT(S.Exp1, 'E')
|
|
sT(S.GoldenRatio, 'GoldenRatio')
|
|
sT(S.TribonacciConstant, 'TribonacciConstant')
|
|
sT(S.Half, 'Rational(1, 2)')
|
|
sT(S.ImaginaryUnit, 'I')
|
|
sT(S.Infinity, 'oo')
|
|
sT(S.NaN, 'nan')
|
|
sT(S.NegativeInfinity, '-oo')
|
|
sT(S.NegativeOne, 'Integer(-1)')
|
|
sT(S.One, 'Integer(1)')
|
|
sT(S.Pi, 'pi')
|
|
sT(S.Zero, 'Integer(0)')
|
|
sT(S.Complexes, 'Complexes')
|
|
sT(S.EmptySequence, 'EmptySequence')
|
|
sT(S.EmptySet, 'EmptySet')
|
|
# sT(S.IdentityFunction, 'Lambda(_x, _x)')
|
|
sT(S.Naturals, 'Naturals')
|
|
sT(S.Naturals0, 'Naturals0')
|
|
sT(S.Rationals, 'Rationals')
|
|
sT(S.Reals, 'Reals')
|
|
sT(S.UniversalSet, 'UniversalSet')
|
|
|
|
|
|
def test_Integer():
|
|
sT(Integer(4), "Integer(4)")
|
|
|
|
|
|
def test_list():
|
|
sT([x, Integer(4)], "[Symbol('x'), Integer(4)]")
|
|
|
|
|
|
def test_Matrix():
|
|
for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]:
|
|
sT(cls([[x**+1, 1], [y, x + y]]),
|
|
"%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
|
|
|
|
sT(cls(), "%s([])" % name)
|
|
|
|
sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
|
|
|
|
|
|
def test_empty_Matrix():
|
|
sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])")
|
|
sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])")
|
|
sT(ones(0, 0), "MutableDenseMatrix([])")
|
|
|
|
|
|
def test_Rational():
|
|
sT(Rational(1, 3), "Rational(1, 3)")
|
|
sT(Rational(-1, 3), "Rational(-1, 3)")
|
|
|
|
|
|
def test_Float():
|
|
sT(Float('1.23', dps=3), "Float('1.22998', precision=13)")
|
|
sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)")
|
|
sT(Float('1.234567890123456789', dps=19),
|
|
"Float('1.234567890123456789013', precision=66)")
|
|
sT(Float('0.60038617995049726', dps=15),
|
|
"Float('0.60038617995049726', precision=53)")
|
|
|
|
sT(Float('1.23', precision=13), "Float('1.22998', precision=13)")
|
|
sT(Float('1.23456789', precision=33),
|
|
"Float('1.23456788994', precision=33)")
|
|
sT(Float('1.234567890123456789', precision=66),
|
|
"Float('1.234567890123456789013', precision=66)")
|
|
sT(Float('0.60038617995049726', precision=53),
|
|
"Float('0.60038617995049726', precision=53)")
|
|
|
|
sT(Float('0.60038617995049726', 15),
|
|
"Float('0.60038617995049726', precision=53)")
|
|
|
|
|
|
def test_Symbol():
|
|
sT(x, "Symbol('x')")
|
|
sT(y, "Symbol('y')")
|
|
sT(Symbol('x', negative=True), "Symbol('x', negative=True)")
|
|
|
|
|
|
def test_Symbol_two_assumptions():
|
|
x = Symbol('x', negative=0, integer=1)
|
|
# order could vary
|
|
s1 = "Symbol('x', integer=True, negative=False)"
|
|
s2 = "Symbol('x', negative=False, integer=True)"
|
|
assert srepr(x) in (s1, s2)
|
|
assert eval(srepr(x), ENV) == x
|
|
|
|
|
|
def test_Symbol_no_special_commutative_treatment():
|
|
sT(Symbol('x'), "Symbol('x')")
|
|
sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)")
|
|
sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)")
|
|
sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)")
|
|
sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)")
|
|
|
|
|
|
def test_Wild():
|
|
sT(Wild('x', even=True), "Wild('x', even=True)")
|
|
|
|
|
|
def test_Dummy():
|
|
d = Dummy('d')
|
|
sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index))
|
|
|
|
|
|
def test_Dummy_assumption():
|
|
d = Dummy('d', nonzero=True)
|
|
assert d == eval(srepr(d))
|
|
s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index)
|
|
s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index)
|
|
assert srepr(d) in (s1, s2)
|
|
|
|
|
|
def test_Dummy_from_Symbol():
|
|
# should not get the full dictionary of assumptions
|
|
n = Symbol('n', integer=True)
|
|
d = n.as_dummy()
|
|
assert srepr(d
|
|
) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index)
|
|
|
|
|
|
def test_tuple():
|
|
sT((x,), "(Symbol('x'),)")
|
|
sT((x, y), "(Symbol('x'), Symbol('y'))")
|
|
|
|
|
|
def test_WildFunction():
|
|
sT(WildFunction('w'), "WildFunction('w')")
|
|
|
|
|
|
def test_settins():
|
|
raises(TypeError, lambda: srepr(x, method="garbage"))
|
|
|
|
|
|
def test_Mul():
|
|
sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))")
|
|
assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))"
|
|
assert srepr(sympify('(x+4)*2*x*7', evaluate=False), order='none') == "Mul(Add(Symbol('x'), Integer(4)), Integer(2), Symbol('x'), Integer(7))"
|
|
|
|
|
|
def test_AlgebraicNumber():
|
|
a = AlgebraicNumber(sqrt(2))
|
|
sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])")
|
|
a = AlgebraicNumber(root(-2, 3))
|
|
sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])")
|
|
|
|
|
|
def test_PolyRing():
|
|
assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)"
|
|
assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)"
|
|
assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
|
|
|
|
|
|
def test_FracField():
|
|
assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)"
|
|
assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)"
|
|
assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
|
|
|
|
|
|
def test_PolyElement():
|
|
R, x, y = ring("x,y", ZZ)
|
|
assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])"
|
|
|
|
|
|
def test_FracElement():
|
|
F, x, y = field("x,y", ZZ)
|
|
assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])"
|
|
|
|
|
|
def test_FractionField():
|
|
assert srepr(QQ.frac_field(x)) == \
|
|
"FractionField(FracField((Symbol('x'),), QQ, lex))"
|
|
assert srepr(QQ.frac_field(x, y, order=grlex)) == \
|
|
"FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))"
|
|
|
|
|
|
def test_PolynomialRingBase():
|
|
assert srepr(ZZ.old_poly_ring(x)) == \
|
|
"GlobalPolynomialRing(ZZ, Symbol('x'))"
|
|
assert srepr(ZZ[x].old_poly_ring(y)) == \
|
|
"GlobalPolynomialRing(ZZ[x], Symbol('y'))"
|
|
assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \
|
|
"GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))"
|
|
|
|
|
|
def test_DMP():
|
|
assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)'
|
|
assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \
|
|
"DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))"
|
|
|
|
|
|
def test_FiniteExtension():
|
|
assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \
|
|
"FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))"
|
|
|
|
|
|
def test_ExtensionElement():
|
|
A = FiniteExtension(Poly(x**2 + 1, x))
|
|
assert srepr(A.generator) == \
|
|
"ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))"
|
|
|
|
|
|
def test_BooleanAtom():
|
|
assert srepr(true) == "true"
|
|
assert srepr(false) == "false"
|
|
|
|
|
|
def test_Integers():
|
|
sT(S.Integers, "Integers")
|
|
|
|
|
|
def test_Naturals():
|
|
sT(S.Naturals, "Naturals")
|
|
|
|
|
|
def test_Naturals0():
|
|
sT(S.Naturals0, "Naturals0")
|
|
|
|
|
|
def test_Reals():
|
|
sT(S.Reals, "Reals")
|
|
|
|
|
|
def test_matrix_expressions():
|
|
n = symbols('n', integer=True)
|
|
A = MatrixSymbol("A", n, n)
|
|
B = MatrixSymbol("B", n, n)
|
|
sT(A, "MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True))")
|
|
sT(A*B, "MatMul(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
|
|
sT(A + B, "MatAdd(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
|
|
|
|
|
|
def test_Cycle():
|
|
# FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2))
|
|
# adds keys to the Cycle dict (GH-17661)
|
|
#import_stmt = "from sympy.combinatorics import Cycle"
|
|
#sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt)
|
|
assert srepr(Cycle(1, 2)) == "Cycle(1, 2)"
|
|
|
|
|
|
def test_Permutation():
|
|
import_stmt = "from sympy.combinatorics import Permutation"
|
|
sT(Permutation(1, 2)(3, 4), "Permutation([0, 2, 1, 4, 3])", import_stmt, perm_cyclic=False)
|
|
sT(Permutation(1, 2)(3, 4), "Permutation(1, 2)(3, 4)", import_stmt, perm_cyclic=True)
|
|
|
|
with warns_deprecated_sympy():
|
|
old_print_cyclic = Permutation.print_cyclic
|
|
Permutation.print_cyclic = False
|
|
sT(Permutation(1, 2)(3, 4), "Permutation([0, 2, 1, 4, 3])", import_stmt)
|
|
Permutation.print_cyclic = old_print_cyclic
|
|
|
|
def test_dict():
|
|
from sympy.abc import x, y, z
|
|
d = {}
|
|
assert srepr(d) == "{}"
|
|
d = {x: y}
|
|
assert srepr(d) == "{Symbol('x'): Symbol('y')}"
|
|
d = {x: y, y: z}
|
|
assert srepr(d) in (
|
|
"{Symbol('x'): Symbol('y'), Symbol('y'): Symbol('z')}",
|
|
"{Symbol('y'): Symbol('z'), Symbol('x'): Symbol('y')}",
|
|
)
|
|
d = {x: {y: z}}
|
|
assert srepr(d) == "{Symbol('x'): {Symbol('y'): Symbol('z')}}"
|
|
|
|
def test_set():
|
|
from sympy.abc import x, y
|
|
s = set()
|
|
assert srepr(s) == "set()"
|
|
s = {x, y}
|
|
assert srepr(s) in ("{Symbol('x'), Symbol('y')}", "{Symbol('y'), Symbol('x')}")
|
|
|
|
def test_Predicate():
|
|
sT(Q.even, "Q.even")
|
|
|
|
def test_AppliedPredicate():
|
|
sT(Q.even(Symbol('z')), "AppliedPredicate(Q.even, Symbol('z'))")
|