Traktor/myenv/Lib/site-packages/torch/_refs/fft.py
2024-05-26 05:12:46 +02:00

591 lines
18 KiB
Python

import math
from typing import Iterable, List, Literal, NamedTuple, Optional, Sequence, Tuple, Union
import torch
import torch._prims as prims
import torch._prims_common as utils
from torch._decomp import register_decomposition
from torch._prims_common import DimsType, ShapeType, TensorLikeType
from torch._prims_common.wrappers import _maybe_convert_to_dtype, out_wrapper
__all__ = [
# Transforms
"fft",
"fft2",
"fftn",
"hfft",
"hfft2",
"hfftn",
"rfft",
"rfft2",
"rfftn",
"ifft",
"ifft2",
"ifftn",
"ihfft",
"ihfft2",
"ihfftn",
"irfft",
"irfft2",
"irfftn",
# Helpers
"fftshift",
"ifftshift",
]
NormType = Union[None, Literal["forward", "backward", "ortho"]]
_NORM_VALUES = {None, "forward", "backward", "ortho"}
aten = torch._ops.ops.aten
def _apply_norm(
x: TensorLikeType, norm: NormType, signal_numel: int, forward: bool
) -> TensorLikeType:
"""Apply normalization to the un-normalized FFT result"""
torch._check(norm in _NORM_VALUES, lambda: f"Invalid normalization mode: {norm}")
if norm == "ortho":
return x * (1 / math.sqrt(signal_numel))
normalize = (not forward and (norm is None or norm == "backward")) or (
forward and norm == "forward"
)
return x * (1 / signal_numel) if normalize else x
def _promote_type_fft(
dtype: torch.dtype, require_complex: bool, device: torch.device
) -> torch.dtype:
"""Helper to promote a dtype to one supported by the FFT primitives"""
if dtype.is_complex:
return dtype
# Promote integral to default float type
if not dtype.is_floating_point:
dtype = torch.get_default_dtype()
allowed_types = [torch.float32, torch.float64]
maybe_support_half = device.type in ["cuda", "meta"]
if maybe_support_half:
allowed_types.append(torch.float16)
torch._check(dtype in allowed_types, lambda: f"Unsupported dtype {dtype}")
if require_complex:
dtype = utils.corresponding_complex_dtype(dtype)
return dtype
def _maybe_promote_tensor_fft(
t: TensorLikeType, require_complex: bool = False
) -> TensorLikeType:
"""Helper to promote a tensor to a dtype supported by the FFT primitives"""
cur_type = t.dtype
new_type = _promote_type_fft(cur_type, require_complex, t.device)
return _maybe_convert_to_dtype(t, new_type) # type: ignore[return-value]
def _resize_fft_input(
x: TensorLikeType, dims: Tuple[int, ...], sizes: Tuple[int, ...]
) -> TensorLikeType:
"""
Fixes the shape of x such that x.size(dims[i]) == sizes[i],
either by zero-padding, or by slicing x starting from 0.
"""
assert len(dims) == len(sizes)
must_copy = False
x_sizes = x.shape
pad_amount = [0] * len(x_sizes) * 2
for i in range(len(dims)):
if sizes[i] == -1:
continue
if x_sizes[dims[i]] < sizes[i]:
must_copy = True
pad_idx = len(pad_amount) - 2 * dims[i] - 1
pad_amount[pad_idx] = sizes[i] - x_sizes[dims[i]]
if x_sizes[dims[i]] > sizes[i]:
x = x.narrow(dims[i], 0, sizes[i])
return torch.constant_pad_nd(x, pad_amount) if must_copy else x
def _fft_c2r(
func_name: str,
input: TensorLikeType,
n: Optional[int],
dim: int,
norm: NormType,
forward: bool,
) -> TensorLikeType:
"""Common code for performing any complex to real FFT (irfft or hfft)"""
input = _maybe_promote_tensor_fft(input, require_complex=True)
dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
last_dim_size = n if n is not None else 2 * (input.shape[dim] - 1)
torch._check(
last_dim_size >= 1,
lambda: f"Invalid number of data points ({last_dim_size}) specified",
)
if n is not None:
input = _resize_fft_input(input, dims=dims, sizes=(last_dim_size // 2 + 1,))
if forward:
input = torch.conj(input)
output = prims.fft_c2r(input, dim=dims, last_dim_size=last_dim_size)
return _apply_norm(output, norm=norm, signal_numel=last_dim_size, forward=forward)
def _fft_r2c(
func_name: str,
input: TensorLikeType,
n: Optional[int],
dim: int,
norm: NormType,
forward: bool,
onesided: bool,
) -> TensorLikeType:
"""Common code for performing any real to complex FFT (rfft or ihfft)"""
torch._check(
not input.dtype.is_complex,
lambda: f"{func_name} expects a floating point input tensor, but got {input.dtype}",
)
input = _maybe_promote_tensor_fft(input)
dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
dim_size = n if n is not None else input.shape[dim]
torch._check(
dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
)
if n is not None:
input = _resize_fft_input(input, dims, (n,))
ret = prims.fft_r2c(input, dim=dims, onesided=onesided)
ret = _apply_norm(ret, norm, dim_size, forward)
return ret if forward else torch.conj(ret)
def _fft_c2c(
func_name: str,
input: TensorLikeType,
n: Optional[int],
dim: int,
norm: NormType,
forward: bool,
) -> TensorLikeType:
"""Common code for performing any complex to complex FFT (fft or ifft)"""
torch._check(
input.dtype.is_complex,
lambda: f"{func_name} expects a complex input tensor, but got {input.dtype}",
)
dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
dim_size = n if n is not None else input.shape[dim]
torch._check(
dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
)
if n is not None:
input = _resize_fft_input(input, dims, (n,))
ret = prims.fft_c2c(input, dim=dims, forward=forward)
return _apply_norm(ret, norm, dim_size, forward)
@register_decomposition(aten.fft_fft)
@out_wrapper()
def fft(
input: TensorLikeType,
n: Optional[int] = None,
dim: int = -1,
norm: NormType = None,
) -> TensorLikeType:
if input.dtype.is_complex:
return _fft_c2c("fft", input, n, dim, norm, forward=True)
else:
return _fft_r2c("fft", input, n, dim, norm, forward=True, onesided=False)
@register_decomposition(aten.fft_ifft)
@out_wrapper()
def ifft(
input: TensorLikeType,
n: Optional[int] = None,
dim: int = -1,
norm: NormType = None,
) -> TensorLikeType:
if input.dtype.is_complex:
return _fft_c2c("ifft", input, n, dim, norm, forward=False)
else:
return _fft_r2c("ifft", input, n, dim, norm, forward=False, onesided=False)
@register_decomposition(aten.fft_rfft)
@out_wrapper()
def rfft(
input: TensorLikeType,
n: Optional[int] = None,
dim: int = -1,
norm: NormType = None,
) -> TensorLikeType:
return _fft_r2c("rfft", input, n, dim, norm, forward=True, onesided=True)
@register_decomposition(aten.fft_irfft)
@out_wrapper()
def irfft(
input: TensorLikeType,
n: Optional[int] = None,
dim: int = -1,
norm: NormType = None,
) -> TensorLikeType:
return _fft_c2r("irfft", input, n, dim, norm, forward=False)
@register_decomposition(aten.fft_hfft)
@out_wrapper()
def hfft(
input: TensorLikeType,
n: Optional[int] = None,
dim: int = -1,
norm: NormType = None,
) -> TensorLikeType:
return _fft_c2r("hfft", input, n, dim, norm, forward=True)
@register_decomposition(aten.fft_ihfft)
@out_wrapper()
def ihfft(
input: TensorLikeType,
n: Optional[int] = None,
dim: int = -1,
norm: NormType = None,
) -> TensorLikeType:
return _fft_r2c("ihfft", input, n, dim, norm, forward=False, onesided=True)
class _ShapeAndDims(NamedTuple):
shape: Tuple[int, ...]
dims: Tuple[int, ...]
def _canonicalize_fft_shape_and_dim_args(
input: TensorLikeType, shape: Optional[ShapeType], dim: Optional[DimsType]
) -> _ShapeAndDims:
"""Convert the shape and dim arguments into a canonical form where neither are optional"""
input_dim = input.ndim
input_sizes = input.shape
if dim is not None:
if not isinstance(dim, Sequence):
dim = (dim,)
ret_dims = utils.canonicalize_dims(input_dim, dim, wrap_scalar=False)
# Check dims are unique
torch._check(
len(set(ret_dims)) == len(ret_dims), lambda: "FFT dims must be unique"
)
if shape is not None:
if not isinstance(shape, Sequence):
shape = (shape,)
# Has shape, might have dim
torch._check(
dim is None or len(dim) == len(shape),
lambda: "When given, dim and shape arguments must have the same length",
)
transform_ndim = len(shape)
torch._check(
transform_ndim <= input_dim,
lambda: f"Got shape with {transform_ndim} values but input tensor "
f"only has {input_dim} dimensions.",
)
# If shape is given, dims defaults to the last len(shape) dimensions
if dim is None:
ret_dims = tuple(range(input_dim - transform_ndim, input_dim))
# Translate any -1 values in shape to the default length
ret_shape = tuple(
s if s != -1 else input_sizes[d] for (s, d) in zip(shape, ret_dims) # type: ignore[possibly-undefined]
)
elif dim is None:
# No shape, no dim
ret_dims = tuple(range(input_dim))
ret_shape = tuple(input_sizes)
else:
# No shape, has dim
ret_shape = tuple(input_sizes[d] for d in ret_dims) # type: ignore[possibly-undefined]
for n in ret_shape:
torch._check(n > 0, lambda: f"Invalid number of data points ({n}) specified")
return _ShapeAndDims(shape=ret_shape, dims=ret_dims) # type: ignore[possibly-undefined]
def _prod(xs: Iterable[int]) -> int:
"""Compute product of a list"""
prod = 1
for x in xs:
prod *= x
return prod
def _fftn_c2c(
function_name: str,
input: TensorLikeType,
shape: Tuple[int, ...],
dim: Tuple[int, ...],
norm: NormType,
forward: bool,
) -> TensorLikeType:
"""Common code for n-dimensional complex to complex FFTs (fftn or ifftn)"""
torch._check(
input.dtype.is_complex,
lambda: f"{function_name} expects a complex input tensor, "
f"but got {input.dtype}",
)
x = _resize_fft_input(input, dim, shape)
output = prims.fft_c2c(x, dim=dim, forward=forward)
return _apply_norm(output, norm=norm, signal_numel=_prod(shape), forward=forward)
@register_decomposition(aten.fft_fftn)
@out_wrapper()
def fftn(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = None,
norm: NormType = None,
) -> TensorLikeType:
(shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
x = _maybe_promote_tensor_fft(input, require_complex=True)
return _fftn_c2c("fftn", x, shape, dim, norm, forward=True)
@register_decomposition(aten.fft_ifftn)
@out_wrapper()
def ifftn(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = None,
norm: NormType = None,
) -> TensorLikeType:
(shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
x = _maybe_promote_tensor_fft(input, require_complex=True)
return _fftn_c2c("ifftn", x, shape, dim, norm, forward=False)
@register_decomposition(aten.fft_rfftn)
@out_wrapper()
def rfftn(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = None,
norm: NormType = None,
) -> TensorLikeType:
torch._check(
not input.dtype.is_complex,
lambda: f"rfftn expects a real-valued input tensor, but got {input.dtype}",
)
shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
input = _maybe_promote_tensor_fft(input, require_complex=False)
input = _resize_fft_input(input, dim, shape)
out = prims.fft_r2c(input, dim=dim, onesided=True)
return _apply_norm(out, norm=norm, signal_numel=_prod(shape), forward=True)
@register_decomposition(aten.fft_ihfftn)
@out_wrapper()
def ihfftn(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = None,
norm: NormType = None,
) -> TensorLikeType:
torch._check(
not input.dtype.is_complex,
lambda: f"ihfftn expects a real-valued input tensor, but got {input.dtype}",
)
shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
torch._check(len(shape) > 0, lambda: "ihfftn must transform at least one axis")
input = _maybe_promote_tensor_fft(input, require_complex=False)
input = _resize_fft_input(input, dim, shape)
tmp = prims.fft_r2c(input, dim=dim[-1:], onesided=True)
if len(dim) == 1:
tmp = _apply_norm(tmp, norm=norm, signal_numel=shape[0], forward=False)
return prims.conj(tmp)
tmp = prims.conj_physical(tmp)
tmp = prims.fft_c2c(tmp, dim=dim[:-1], forward=False)
return _apply_norm(tmp, norm=norm, signal_numel=_prod(shape), forward=False)
class _CanonicalizeC2rReturn(NamedTuple):
shape: Tuple[int, ...]
dim: Tuple[int, ...]
last_dim_size: int
def _canonicalize_fft_c2r_shape_and_dim_args(
fname: str,
input: TensorLikeType,
s: Optional[ShapeType],
dim: Optional[DimsType],
) -> _CanonicalizeC2rReturn:
"""Canonicalize shape and dim arguments for n-dimensional c2r transforms,
as well as calculating the last_dim_size which is shape[dim[-1]] for the output"""
(shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
torch._check(len(shape) > 0, lambda: f"{fname} must transform at least one axis")
if s is None or s[-1] == -1:
last_dim_size = 2 * (input.shape[dim[-1]] - 1)
else:
last_dim_size = shape[-1]
torch._check(
last_dim_size >= 1,
lambda: f"Invalid number of data points ({last_dim_size}) specified",
)
shape_list = list(shape)
shape_list[-1] = last_dim_size // 2 + 1
return _CanonicalizeC2rReturn(
shape=tuple(shape_list), dim=dim, last_dim_size=last_dim_size
)
@register_decomposition(aten.fft_irfftn)
@out_wrapper()
def irfftn(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = None,
norm: NormType = None,
) -> TensorLikeType:
shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
"irfftn", input, s, dim
)
input = _maybe_promote_tensor_fft(input, require_complex=True)
input = _resize_fft_input(input, dim, shape)
out = prims.fft_c2r(input, dim=dim, last_dim_size=last_dim_size)
return _apply_norm(out, norm, _prod(out.shape[d] for d in dim), forward=False)
@register_decomposition(aten.fft_hfftn)
@out_wrapper()
def hfftn(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = None,
norm: NormType = None,
) -> TensorLikeType:
shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
"hfftn", input, s, dim
)
input = _maybe_promote_tensor_fft(input, require_complex=True)
input = _resize_fft_input(input, dim, shape)
tmp = prims.fft_c2c(input, dim=dim[:-1], forward=True) if len(dim) > 1 else input
tmp = _apply_norm(tmp, norm, _prod(shape[:-1]), forward=True)
tmp = prims.conj_physical(tmp)
out = prims.fft_c2r(tmp, dim=dim[-1:], last_dim_size=last_dim_size)
return _apply_norm(out, norm, last_dim_size, forward=True)
@register_decomposition(aten.fft_fft2)
@out_wrapper()
def fft2(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = (-2, -1),
norm: NormType = None,
) -> TensorLikeType:
return torch.fft.fftn(input, s=s, dim=dim, norm=norm)
@register_decomposition(aten.fft_ifft2)
@out_wrapper()
def ifft2(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = (-2, -1),
norm: NormType = None,
) -> TensorLikeType:
return torch.fft.ifftn(input, s=s, dim=dim, norm=norm)
@register_decomposition(aten.fft_rfft2)
@out_wrapper()
def rfft2(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = (-2, -1),
norm: NormType = None,
) -> TensorLikeType:
return torch.fft.rfftn(input, s=s, dim=dim, norm=norm)
@register_decomposition(aten.fft_irfft2)
@out_wrapper()
def irfft2(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = (-2, -1),
norm: NormType = None,
) -> TensorLikeType:
return torch.fft.irfftn(input, s=s, dim=dim, norm=norm)
@register_decomposition(aten.fft_hfft2)
@out_wrapper()
def hfft2(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = (-2, -1),
norm: NormType = None,
) -> TensorLikeType:
return torch.fft.hfftn(input, s=s, dim=dim, norm=norm)
@register_decomposition(aten.fft_ihfft2)
@out_wrapper()
def ihfft2(
input: TensorLikeType,
s: Optional[ShapeType] = None,
dim: Optional[DimsType] = (-2, -1),
norm: NormType = None,
) -> TensorLikeType:
return torch.fft.ihfftn(input, s=s, dim=dim, norm=norm)
def _default_alldims(dim: Optional[DimsType], x: TensorLikeType) -> List[int]:
"""Convert Optional[DimsType] to a simple list, defaulting to all dimensions"""
if dim is None:
return list(range(x.ndim))
elif not isinstance(dim, Sequence):
return [dim]
else:
return list(dim)
@register_decomposition(aten.fft_fftshift)
def fftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
dims = _default_alldims(dim, input)
shift = [input.shape[d] // 2 for d in dims]
return torch.roll(input, shift, dims)
@register_decomposition(aten.fft_ifftshift)
def ifftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
dims = _default_alldims(dim, input)
shift = [(input.shape[d] + 1) // 2 for d in dims]
return torch.roll(input, shift, dims)