73 lines
3.2 KiB
Python
73 lines
3.2 KiB
Python
from torch import nn, Tensor
|
|
|
|
__all__ = [
|
|
"Wav2Letter",
|
|
]
|
|
|
|
|
|
class Wav2Letter(nn.Module):
|
|
r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech
|
|
Recognition System* :cite:`collobert2016wav2letter`.
|
|
|
|
See Also:
|
|
* `Training example <https://github.com/pytorch/audio/tree/release/0.12/examples/pipeline_wav2letter>`__
|
|
|
|
Args:
|
|
num_classes (int, optional): Number of classes to be classified. (Default: ``40``)
|
|
input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum``
|
|
or ``mfcc`` (Default: ``waveform``).
|
|
num_features (int, optional): Number of input features that the network will receive (Default: ``1``).
|
|
"""
|
|
|
|
def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None:
|
|
super().__init__()
|
|
|
|
acoustic_num_features = 250 if input_type == "waveform" else num_features
|
|
acoustic_model = nn.Sequential(
|
|
nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
if input_type == "waveform":
|
|
waveform_model = nn.Sequential(
|
|
nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
self.acoustic_model = nn.Sequential(waveform_model, acoustic_model)
|
|
|
|
if input_type in ["power_spectrum", "mfcc"]:
|
|
self.acoustic_model = acoustic_model
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
r"""
|
|
Args:
|
|
x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length).
|
|
|
|
Returns:
|
|
Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length).
|
|
"""
|
|
|
|
x = self.acoustic_model(x)
|
|
x = nn.functional.log_softmax(x, dim=1)
|
|
return x
|