Traktor/myenv/Lib/site-packages/torchaudio/models/wavernn.py
2024-05-26 05:12:46 +02:00

410 lines
15 KiB
Python

import math
from typing import List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn, Tensor
__all__ = [
"ResBlock",
"MelResNet",
"Stretch2d",
"UpsampleNetwork",
"WaveRNN",
]
class ResBlock(nn.Module):
r"""ResNet block based on *Efficient Neural Audio Synthesis* :cite:`kalchbrenner2018efficient`.
Args:
n_freq: the number of bins in a spectrogram. (Default: ``128``)
Examples
>>> resblock = ResBlock()
>>> input = torch.rand(10, 128, 512) # a random spectrogram
>>> output = resblock(input) # shape: (10, 128, 512)
"""
def __init__(self, n_freq: int = 128) -> None:
super().__init__()
self.resblock_model = nn.Sequential(
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False),
nn.BatchNorm1d(n_freq),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False),
nn.BatchNorm1d(n_freq),
)
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the ResBlock layer.
Args:
specgram (Tensor): the input sequence to the ResBlock layer (n_batch, n_freq, n_time).
Return:
Tensor shape: (n_batch, n_freq, n_time)
"""
return self.resblock_model(specgram) + specgram
class MelResNet(nn.Module):
r"""MelResNet layer uses a stack of ResBlocks on spectrogram.
Args:
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
Examples
>>> melresnet = MelResNet()
>>> input = torch.rand(10, 128, 512) # a random spectrogram
>>> output = melresnet(input) # shape: (10, 128, 508)
"""
def __init__(
self, n_res_block: int = 10, n_freq: int = 128, n_hidden: int = 128, n_output: int = 128, kernel_size: int = 5
) -> None:
super().__init__()
ResBlocks = [ResBlock(n_hidden) for _ in range(n_res_block)]
self.melresnet_model = nn.Sequential(
nn.Conv1d(in_channels=n_freq, out_channels=n_hidden, kernel_size=kernel_size, bias=False),
nn.BatchNorm1d(n_hidden),
nn.ReLU(inplace=True),
*ResBlocks,
nn.Conv1d(in_channels=n_hidden, out_channels=n_output, kernel_size=1),
)
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the MelResNet layer.
Args:
specgram (Tensor): the input sequence to the MelResNet layer (n_batch, n_freq, n_time).
Return:
Tensor shape: (n_batch, n_output, n_time - kernel_size + 1)
"""
return self.melresnet_model(specgram)
class Stretch2d(nn.Module):
r"""Upscale the frequency and time dimensions of a spectrogram.
Args:
time_scale: the scale factor in time dimension
freq_scale: the scale factor in frequency dimension
Examples
>>> stretch2d = Stretch2d(time_scale=10, freq_scale=5)
>>> input = torch.rand(10, 100, 512) # a random spectrogram
>>> output = stretch2d(input) # shape: (10, 500, 5120)
"""
def __init__(self, time_scale: int, freq_scale: int) -> None:
super().__init__()
self.freq_scale = freq_scale
self.time_scale = time_scale
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the Stretch2d layer.
Args:
specgram (Tensor): the input sequence to the Stretch2d layer (..., n_freq, n_time).
Return:
Tensor shape: (..., n_freq * freq_scale, n_time * time_scale)
"""
return specgram.repeat_interleave(self.freq_scale, -2).repeat_interleave(self.time_scale, -1)
class UpsampleNetwork(nn.Module):
r"""Upscale the dimensions of a spectrogram.
Args:
upsample_scales: the list of upsample scales.
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
Examples
>>> upsamplenetwork = UpsampleNetwork(upsample_scales=[4, 4, 16])
>>> input = torch.rand(10, 128, 10) # a random spectrogram
>>> output = upsamplenetwork(input) # shape: (10, 128, 1536), (10, 128, 1536)
"""
def __init__(
self,
upsample_scales: List[int],
n_res_block: int = 10,
n_freq: int = 128,
n_hidden: int = 128,
n_output: int = 128,
kernel_size: int = 5,
) -> None:
super().__init__()
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
self.total_scale: int = total_scale
self.indent = (kernel_size - 1) // 2 * total_scale
self.resnet = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
self.resnet_stretch = Stretch2d(total_scale, 1)
up_layers = []
for scale in upsample_scales:
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(
in_channels=1, out_channels=1, kernel_size=(1, scale * 2 + 1), padding=(0, scale), bias=False
)
torch.nn.init.constant_(conv.weight, 1.0 / (scale * 2 + 1))
up_layers.append(stretch)
up_layers.append(conv)
self.upsample_layers = nn.Sequential(*up_layers)
def forward(self, specgram: Tensor) -> Tuple[Tensor, Tensor]:
r"""Pass the input through the UpsampleNetwork layer.
Args:
specgram (Tensor): the input sequence to the UpsampleNetwork layer (n_batch, n_freq, n_time)
Return:
Tensor shape: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale),
(n_batch, n_output, (n_time - kernel_size + 1) * total_scale)
where total_scale is the product of all elements in upsample_scales.
"""
resnet_output = self.resnet(specgram).unsqueeze(1)
resnet_output = self.resnet_stretch(resnet_output)
resnet_output = resnet_output.squeeze(1)
specgram = specgram.unsqueeze(1)
upsampling_output = self.upsample_layers(specgram)
upsampling_output = upsampling_output.squeeze(1)[:, :, self.indent : -self.indent]
return upsampling_output, resnet_output
class WaveRNN(nn.Module):
r"""WaveRNN model from *Efficient Neural Audio Synthesis* :cite:`wavernn`
based on the implementation from `fatchord/WaveRNN <https://github.com/fatchord/WaveRNN>`_.
The original implementation was introduced in *Efficient Neural Audio Synthesis*
:cite:`kalchbrenner2018efficient`. The input channels of waveform and spectrogram have to be 1.
The product of `upsample_scales` must equal `hop_length`.
See Also:
* `Training example <https://github.com/pytorch/audio/tree/release/0.12/examples/pipeline_wavernn>`__
* :class:`torchaudio.pipelines.Tacotron2TTSBundle`: TTS pipeline with pretrained model.
Args:
upsample_scales: the list of upsample scales.
n_classes: the number of output classes.
hop_length: the number of samples between the starts of consecutive frames.
n_res_block: the number of ResBlock in stack. (Default: ``10``)
n_rnn: the dimension of RNN layer. (Default: ``512``)
n_fc: the dimension of fully connected layer. (Default: ``512``)
kernel_size: the number of kernel size in the first Conv1d layer. (Default: ``5``)
n_freq: the number of bins in a spectrogram. (Default: ``128``)
n_hidden: the number of hidden dimensions of resblock. (Default: ``128``)
n_output: the number of output dimensions of melresnet. (Default: ``128``)
Example
>>> wavernn = WaveRNN(upsample_scales=[5,5,8], n_classes=512, hop_length=200)
>>> waveform, sample_rate = torchaudio.load(file)
>>> # waveform shape: (n_batch, n_channel, (n_time - kernel_size + 1) * hop_length)
>>> specgram = MelSpectrogram(sample_rate)(waveform) # shape: (n_batch, n_channel, n_freq, n_time)
>>> output = wavernn(waveform, specgram)
>>> # output shape: (n_batch, n_channel, (n_time - kernel_size + 1) * hop_length, n_classes)
"""
def __init__(
self,
upsample_scales: List[int],
n_classes: int,
hop_length: int,
n_res_block: int = 10,
n_rnn: int = 512,
n_fc: int = 512,
kernel_size: int = 5,
n_freq: int = 128,
n_hidden: int = 128,
n_output: int = 128,
) -> None:
super().__init__()
self.kernel_size = kernel_size
self._pad = (kernel_size - 1 if kernel_size % 2 else kernel_size) // 2
self.n_rnn = n_rnn
self.n_aux = n_output // 4
self.hop_length = hop_length
self.n_classes = n_classes
self.n_bits: int = int(math.log2(self.n_classes))
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
if total_scale != self.hop_length:
raise ValueError(f"Expected: total_scale == hop_length, but found {total_scale} != {hop_length}")
self.upsample = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size)
self.fc = nn.Linear(n_freq + self.n_aux + 1, n_rnn)
self.rnn1 = nn.GRU(n_rnn, n_rnn, batch_first=True)
self.rnn2 = nn.GRU(n_rnn + self.n_aux, n_rnn, batch_first=True)
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(n_rnn + self.n_aux, n_fc)
self.fc2 = nn.Linear(n_fc + self.n_aux, n_fc)
self.fc3 = nn.Linear(n_fc, self.n_classes)
def forward(self, waveform: Tensor, specgram: Tensor) -> Tensor:
r"""Pass the input through the WaveRNN model.
Args:
waveform: the input waveform to the WaveRNN layer (n_batch, 1, (n_time - kernel_size + 1) * hop_length)
specgram: the input spectrogram to the WaveRNN layer (n_batch, 1, n_freq, n_time)
Return:
Tensor: shape (n_batch, 1, (n_time - kernel_size + 1) * hop_length, n_classes)
"""
if waveform.size(1) != 1:
raise ValueError("Require the input channel of waveform is 1")
if specgram.size(1) != 1:
raise ValueError("Require the input channel of specgram is 1")
# remove channel dimension until the end
waveform, specgram = waveform.squeeze(1), specgram.squeeze(1)
batch_size = waveform.size(0)
h1 = torch.zeros(1, batch_size, self.n_rnn, dtype=waveform.dtype, device=waveform.device)
h2 = torch.zeros(1, batch_size, self.n_rnn, dtype=waveform.dtype, device=waveform.device)
# output of upsample:
# specgram: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale)
# aux: (n_batch, n_output, (n_time - kernel_size + 1) * total_scale)
specgram, aux = self.upsample(specgram)
specgram = specgram.transpose(1, 2)
aux = aux.transpose(1, 2)
aux_idx = [self.n_aux * i for i in range(5)]
a1 = aux[:, :, aux_idx[0] : aux_idx[1]]
a2 = aux[:, :, aux_idx[1] : aux_idx[2]]
a3 = aux[:, :, aux_idx[2] : aux_idx[3]]
a4 = aux[:, :, aux_idx[3] : aux_idx[4]]
x = torch.cat([waveform.unsqueeze(-1), specgram, a1], dim=-1)
x = self.fc(x)
res = x
x, _ = self.rnn1(x, h1)
x = x + res
res = x
x = torch.cat([x, a2], dim=-1)
x, _ = self.rnn2(x, h2)
x = x + res
x = torch.cat([x, a3], dim=-1)
x = self.fc1(x)
x = self.relu1(x)
x = torch.cat([x, a4], dim=-1)
x = self.fc2(x)
x = self.relu2(x)
x = self.fc3(x)
# bring back channel dimension
return x.unsqueeze(1)
@torch.jit.export
def infer(self, specgram: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
r"""Inference method of WaveRNN.
This function currently only supports multinomial sampling, which assumes the
network is trained on cross entropy loss.
Args:
specgram (Tensor):
Batch of spectrograms. Shape: `(n_batch, n_freq, n_time)`.
lengths (Tensor or None, optional):
Indicates the valid length of each audio in the batch.
Shape: `(batch, )`.
When the ``specgram`` contains spectrograms with different durations,
by providing ``lengths`` argument, the model will compute
the corresponding valid output lengths.
If ``None``, it is assumed that all the audio in ``waveforms``
have valid length. Default: ``None``.
Returns:
(Tensor, Optional[Tensor]):
Tensor
The inferred waveform of size `(n_batch, 1, n_time)`.
1 stands for a single channel.
Tensor or None
If ``lengths`` argument was provided, a Tensor of shape `(batch, )`
is returned.
It indicates the valid length in time axis of the output Tensor.
"""
device = specgram.device
dtype = specgram.dtype
specgram = torch.nn.functional.pad(specgram, (self._pad, self._pad))
specgram, aux = self.upsample(specgram)
if lengths is not None:
lengths = lengths * self.upsample.total_scale
output: List[Tensor] = []
b_size, _, seq_len = specgram.size()
h1 = torch.zeros((1, b_size, self.n_rnn), device=device, dtype=dtype)
h2 = torch.zeros((1, b_size, self.n_rnn), device=device, dtype=dtype)
x = torch.zeros((b_size, 1), device=device, dtype=dtype)
aux_split = [aux[:, self.n_aux * i : self.n_aux * (i + 1), :] for i in range(4)]
for i in range(seq_len):
m_t = specgram[:, :, i]
a1_t, a2_t, a3_t, a4_t = [a[:, :, i] for a in aux_split]
x = torch.cat([x, m_t, a1_t], dim=1)
x = self.fc(x)
_, h1 = self.rnn1(x.unsqueeze(1), h1)
x = x + h1[0]
inp = torch.cat([x, a2_t], dim=1)
_, h2 = self.rnn2(inp.unsqueeze(1), h2)
x = x + h2[0]
x = torch.cat([x, a3_t], dim=1)
x = F.relu(self.fc1(x))
x = torch.cat([x, a4_t], dim=1)
x = F.relu(self.fc2(x))
logits = self.fc3(x)
posterior = F.softmax(logits, dim=1)
x = torch.multinomial(posterior, 1).float()
# Transform label [0, 2 ** n_bits - 1] to waveform [-1, 1]
x = 2 * x / (2**self.n_bits - 1.0) - 1.0
output.append(x)
return torch.stack(output).permute(1, 2, 0), lengths