220 lines
8.5 KiB
Python
220 lines
8.5 KiB
Python
import os
|
|
import shutil
|
|
import tempfile
|
|
from contextlib import contextmanager
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
|
|
from .folder import ImageFolder
|
|
from .utils import check_integrity, extract_archive, verify_str_arg
|
|
|
|
ARCHIVE_META = {
|
|
"train": ("ILSVRC2012_img_train.tar", "1d675b47d978889d74fa0da5fadfb00e"),
|
|
"val": ("ILSVRC2012_img_val.tar", "29b22e2961454d5413ddabcf34fc5622"),
|
|
"devkit": ("ILSVRC2012_devkit_t12.tar.gz", "fa75699e90414af021442c21a62c3abf"),
|
|
}
|
|
|
|
META_FILE = "meta.bin"
|
|
|
|
|
|
class ImageNet(ImageFolder):
|
|
"""`ImageNet <http://image-net.org/>`_ 2012 Classification Dataset.
|
|
|
|
.. note::
|
|
Before using this class, it is required to download ImageNet 2012 dataset from
|
|
`here <https://image-net.org/challenges/LSVRC/2012/2012-downloads.php>`_ and
|
|
place the files ``ILSVRC2012_devkit_t12.tar.gz`` and ``ILSVRC2012_img_train.tar``
|
|
or ``ILSVRC2012_img_val.tar`` based on ``split`` in the root directory.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of the ImageNet Dataset.
|
|
split (string, optional): The dataset split, supports ``train``, or ``val``.
|
|
transform (callable, optional): A function/transform that takes in a PIL image
|
|
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
|
target_transform (callable, optional): A function/transform that takes in the
|
|
target and transforms it.
|
|
loader (callable, optional): A function to load an image given its path.
|
|
|
|
Attributes:
|
|
classes (list): List of the class name tuples.
|
|
class_to_idx (dict): Dict with items (class_name, class_index).
|
|
wnids (list): List of the WordNet IDs.
|
|
wnid_to_idx (dict): Dict with items (wordnet_id, class_index).
|
|
imgs (list): List of (image path, class_index) tuples
|
|
targets (list): The class_index value for each image in the dataset
|
|
"""
|
|
|
|
def __init__(self, root: Union[str, Path], split: str = "train", **kwargs: Any) -> None:
|
|
root = self.root = os.path.expanduser(root)
|
|
self.split = verify_str_arg(split, "split", ("train", "val"))
|
|
|
|
self.parse_archives()
|
|
wnid_to_classes = load_meta_file(self.root)[0]
|
|
|
|
super().__init__(self.split_folder, **kwargs)
|
|
self.root = root
|
|
|
|
self.wnids = self.classes
|
|
self.wnid_to_idx = self.class_to_idx
|
|
self.classes = [wnid_to_classes[wnid] for wnid in self.wnids]
|
|
self.class_to_idx = {cls: idx for idx, clss in enumerate(self.classes) for cls in clss}
|
|
|
|
def parse_archives(self) -> None:
|
|
if not check_integrity(os.path.join(self.root, META_FILE)):
|
|
parse_devkit_archive(self.root)
|
|
|
|
if not os.path.isdir(self.split_folder):
|
|
if self.split == "train":
|
|
parse_train_archive(self.root)
|
|
elif self.split == "val":
|
|
parse_val_archive(self.root)
|
|
|
|
@property
|
|
def split_folder(self) -> str:
|
|
return os.path.join(self.root, self.split)
|
|
|
|
def extra_repr(self) -> str:
|
|
return "Split: {split}".format(**self.__dict__)
|
|
|
|
|
|
def load_meta_file(root: Union[str, Path], file: Optional[str] = None) -> Tuple[Dict[str, str], List[str]]:
|
|
if file is None:
|
|
file = META_FILE
|
|
file = os.path.join(root, file)
|
|
|
|
if check_integrity(file):
|
|
return torch.load(file, weights_only=True)
|
|
else:
|
|
msg = (
|
|
"The meta file {} is not present in the root directory or is corrupted. "
|
|
"This file is automatically created by the ImageNet dataset."
|
|
)
|
|
raise RuntimeError(msg.format(file, root))
|
|
|
|
|
|
def _verify_archive(root: Union[str, Path], file: str, md5: str) -> None:
|
|
if not check_integrity(os.path.join(root, file), md5):
|
|
msg = (
|
|
"The archive {} is not present in the root directory or is corrupted. "
|
|
"You need to download it externally and place it in {}."
|
|
)
|
|
raise RuntimeError(msg.format(file, root))
|
|
|
|
|
|
def parse_devkit_archive(root: Union[str, Path], file: Optional[str] = None) -> None:
|
|
"""Parse the devkit archive of the ImageNet2012 classification dataset and save
|
|
the meta information in a binary file.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory containing the devkit archive
|
|
file (str, optional): Name of devkit archive. Defaults to
|
|
'ILSVRC2012_devkit_t12.tar.gz'
|
|
"""
|
|
import scipy.io as sio
|
|
|
|
def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, Tuple[str, ...]]]:
|
|
metafile = os.path.join(devkit_root, "data", "meta.mat")
|
|
meta = sio.loadmat(metafile, squeeze_me=True)["synsets"]
|
|
nums_children = list(zip(*meta))[4]
|
|
meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0]
|
|
idcs, wnids, classes = list(zip(*meta))[:3]
|
|
classes = [tuple(clss.split(", ")) for clss in classes]
|
|
idx_to_wnid = {idx: wnid for idx, wnid in zip(idcs, wnids)}
|
|
wnid_to_classes = {wnid: clss for wnid, clss in zip(wnids, classes)}
|
|
return idx_to_wnid, wnid_to_classes
|
|
|
|
def parse_val_groundtruth_txt(devkit_root: str) -> List[int]:
|
|
file = os.path.join(devkit_root, "data", "ILSVRC2012_validation_ground_truth.txt")
|
|
with open(file) as txtfh:
|
|
val_idcs = txtfh.readlines()
|
|
return [int(val_idx) for val_idx in val_idcs]
|
|
|
|
@contextmanager
|
|
def get_tmp_dir() -> Iterator[str]:
|
|
tmp_dir = tempfile.mkdtemp()
|
|
try:
|
|
yield tmp_dir
|
|
finally:
|
|
shutil.rmtree(tmp_dir)
|
|
|
|
archive_meta = ARCHIVE_META["devkit"]
|
|
if file is None:
|
|
file = archive_meta[0]
|
|
md5 = archive_meta[1]
|
|
|
|
_verify_archive(root, file, md5)
|
|
|
|
with get_tmp_dir() as tmp_dir:
|
|
extract_archive(os.path.join(root, file), tmp_dir)
|
|
|
|
devkit_root = os.path.join(tmp_dir, "ILSVRC2012_devkit_t12")
|
|
idx_to_wnid, wnid_to_classes = parse_meta_mat(devkit_root)
|
|
val_idcs = parse_val_groundtruth_txt(devkit_root)
|
|
val_wnids = [idx_to_wnid[idx] for idx in val_idcs]
|
|
|
|
torch.save((wnid_to_classes, val_wnids), os.path.join(root, META_FILE))
|
|
|
|
|
|
def parse_train_archive(root: Union[str, Path], file: Optional[str] = None, folder: str = "train") -> None:
|
|
"""Parse the train images archive of the ImageNet2012 classification dataset and
|
|
prepare it for usage with the ImageNet dataset.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory containing the train images archive
|
|
file (str, optional): Name of train images archive. Defaults to
|
|
'ILSVRC2012_img_train.tar'
|
|
folder (str, optional): Optional name for train images folder. Defaults to
|
|
'train'
|
|
"""
|
|
archive_meta = ARCHIVE_META["train"]
|
|
if file is None:
|
|
file = archive_meta[0]
|
|
md5 = archive_meta[1]
|
|
|
|
_verify_archive(root, file, md5)
|
|
|
|
train_root = os.path.join(root, folder)
|
|
extract_archive(os.path.join(root, file), train_root)
|
|
|
|
archives = [os.path.join(train_root, archive) for archive in os.listdir(train_root)]
|
|
for archive in archives:
|
|
extract_archive(archive, os.path.splitext(archive)[0], remove_finished=True)
|
|
|
|
|
|
def parse_val_archive(
|
|
root: Union[str, Path], file: Optional[str] = None, wnids: Optional[List[str]] = None, folder: str = "val"
|
|
) -> None:
|
|
"""Parse the validation images archive of the ImageNet2012 classification dataset
|
|
and prepare it for usage with the ImageNet dataset.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory containing the validation images archive
|
|
file (str, optional): Name of validation images archive. Defaults to
|
|
'ILSVRC2012_img_val.tar'
|
|
wnids (list, optional): List of WordNet IDs of the validation images. If None
|
|
is given, the IDs are loaded from the meta file in the root directory
|
|
folder (str, optional): Optional name for validation images folder. Defaults to
|
|
'val'
|
|
"""
|
|
archive_meta = ARCHIVE_META["val"]
|
|
if file is None:
|
|
file = archive_meta[0]
|
|
md5 = archive_meta[1]
|
|
if wnids is None:
|
|
wnids = load_meta_file(root)[1]
|
|
|
|
_verify_archive(root, file, md5)
|
|
|
|
val_root = os.path.join(root, folder)
|
|
extract_archive(os.path.join(root, file), val_root)
|
|
|
|
images = sorted(os.path.join(val_root, image) for image in os.listdir(val_root))
|
|
|
|
for wnid in set(wnids):
|
|
os.mkdir(os.path.join(val_root, wnid))
|
|
|
|
for wnid, img_file in zip(wnids, images):
|
|
shutil.move(img_file, os.path.join(val_root, wnid, os.path.basename(img_file)))
|