487 lines
14 KiB
Python
487 lines
14 KiB
Python
try:
|
|
import cython
|
|
|
|
COMPILED = cython.compiled
|
|
except (AttributeError, ImportError):
|
|
# if cython not installed, use mock module with no-op decorators and types
|
|
from fontTools.misc import cython
|
|
|
|
COMPILED = False
|
|
|
|
from typing import (
|
|
Sequence,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
from numbers import Integral, Real
|
|
|
|
|
|
_Point = Tuple[Real, Real]
|
|
_Delta = Tuple[Real, Real]
|
|
_PointSegment = Sequence[_Point]
|
|
_DeltaSegment = Sequence[_Delta]
|
|
_DeltaOrNone = Union[_Delta, None]
|
|
_DeltaOrNoneSegment = Sequence[_DeltaOrNone]
|
|
_Endpoints = Sequence[Integral]
|
|
|
|
|
|
MAX_LOOKBACK = 8
|
|
|
|
|
|
@cython.cfunc
|
|
@cython.locals(
|
|
j=cython.int,
|
|
n=cython.int,
|
|
x1=cython.double,
|
|
x2=cython.double,
|
|
d1=cython.double,
|
|
d2=cython.double,
|
|
scale=cython.double,
|
|
x=cython.double,
|
|
d=cython.double,
|
|
)
|
|
def iup_segment(
|
|
coords: _PointSegment, rc1: _Point, rd1: _Delta, rc2: _Point, rd2: _Delta
|
|
): # -> _DeltaSegment:
|
|
"""Given two reference coordinates `rc1` & `rc2` and their respective
|
|
delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of
|
|
coordinates `coords`."""
|
|
|
|
# rc1 = reference coord 1
|
|
# rd1 = reference delta 1
|
|
out_arrays = [None, None]
|
|
for j in 0, 1:
|
|
out_arrays[j] = out = []
|
|
x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]
|
|
|
|
if x1 == x2:
|
|
n = len(coords)
|
|
if d1 == d2:
|
|
out.extend([d1] * n)
|
|
else:
|
|
out.extend([0] * n)
|
|
continue
|
|
|
|
if x1 > x2:
|
|
x1, x2 = x2, x1
|
|
d1, d2 = d2, d1
|
|
|
|
# x1 < x2
|
|
scale = (d2 - d1) / (x2 - x1)
|
|
for pair in coords:
|
|
x = pair[j]
|
|
|
|
if x <= x1:
|
|
d = d1
|
|
elif x >= x2:
|
|
d = d2
|
|
else:
|
|
# Interpolate
|
|
d = d1 + (x - x1) * scale
|
|
|
|
out.append(d)
|
|
|
|
return zip(*out_arrays)
|
|
|
|
|
|
def iup_contour(deltas: _DeltaOrNoneSegment, coords: _PointSegment) -> _DeltaSegment:
|
|
"""For the contour given in `coords`, interpolate any missing
|
|
delta values in delta vector `deltas`.
|
|
|
|
Returns fully filled-out delta vector."""
|
|
|
|
assert len(deltas) == len(coords)
|
|
if None not in deltas:
|
|
return deltas
|
|
|
|
n = len(deltas)
|
|
# indices of points with explicit deltas
|
|
indices = [i for i, v in enumerate(deltas) if v is not None]
|
|
if not indices:
|
|
# All deltas are None. Return 0,0 for all.
|
|
return [(0, 0)] * n
|
|
|
|
out = []
|
|
it = iter(indices)
|
|
start = next(it)
|
|
if start != 0:
|
|
# Initial segment that wraps around
|
|
i1, i2, ri1, ri2 = 0, start, start, indices[-1]
|
|
out.extend(
|
|
iup_segment(
|
|
coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
|
|
)
|
|
)
|
|
out.append(deltas[start])
|
|
for end in it:
|
|
if end - start > 1:
|
|
i1, i2, ri1, ri2 = start + 1, end, start, end
|
|
out.extend(
|
|
iup_segment(
|
|
coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
|
|
)
|
|
)
|
|
out.append(deltas[end])
|
|
start = end
|
|
if start != n - 1:
|
|
# Final segment that wraps around
|
|
i1, i2, ri1, ri2 = start + 1, n, start, indices[0]
|
|
out.extend(
|
|
iup_segment(
|
|
coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
|
|
)
|
|
)
|
|
|
|
assert len(deltas) == len(out), (len(deltas), len(out))
|
|
return out
|
|
|
|
|
|
def iup_delta(
|
|
deltas: _DeltaOrNoneSegment, coords: _PointSegment, ends: _Endpoints
|
|
) -> _DeltaSegment:
|
|
"""For the outline given in `coords`, with contour endpoints given
|
|
in sorted increasing order in `ends`, interpolate any missing
|
|
delta values in delta vector `deltas`.
|
|
|
|
Returns fully filled-out delta vector."""
|
|
|
|
assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
|
|
n = len(coords)
|
|
ends = ends + [n - 4, n - 3, n - 2, n - 1]
|
|
out = []
|
|
start = 0
|
|
for end in ends:
|
|
end += 1
|
|
contour = iup_contour(deltas[start:end], coords[start:end])
|
|
out.extend(contour)
|
|
start = end
|
|
|
|
return out
|
|
|
|
|
|
# Optimizer
|
|
|
|
|
|
@cython.cfunc
|
|
@cython.inline
|
|
@cython.locals(
|
|
i=cython.int,
|
|
j=cython.int,
|
|
# tolerance=cython.double, # https://github.com/fonttools/fonttools/issues/3282
|
|
x=cython.double,
|
|
y=cython.double,
|
|
p=cython.double,
|
|
q=cython.double,
|
|
)
|
|
@cython.returns(int)
|
|
def can_iup_in_between(
|
|
deltas: _DeltaSegment,
|
|
coords: _PointSegment,
|
|
i: Integral,
|
|
j: Integral,
|
|
tolerance: Real,
|
|
): # -> bool:
|
|
"""Return true if the deltas for points at `i` and `j` (`i < j`) can be
|
|
successfully used to interpolate deltas for points in between them within
|
|
provided error tolerance."""
|
|
|
|
assert j - i >= 2
|
|
interp = iup_segment(coords[i + 1 : j], coords[i], deltas[i], coords[j], deltas[j])
|
|
deltas = deltas[i + 1 : j]
|
|
|
|
return all(
|
|
abs(complex(x - p, y - q)) <= tolerance
|
|
for (x, y), (p, q) in zip(deltas, interp)
|
|
)
|
|
|
|
|
|
@cython.locals(
|
|
cj=cython.double,
|
|
dj=cython.double,
|
|
lcj=cython.double,
|
|
ldj=cython.double,
|
|
ncj=cython.double,
|
|
ndj=cython.double,
|
|
force=cython.int,
|
|
forced=set,
|
|
)
|
|
def _iup_contour_bound_forced_set(
|
|
deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0
|
|
) -> set:
|
|
"""The forced set is a conservative set of points on the contour that must be encoded
|
|
explicitly (ie. cannot be interpolated). Calculating this set allows for significantly
|
|
speeding up the dynamic-programming, as well as resolve circularity in DP.
|
|
|
|
The set is precise; that is, if an index is in the returned set, then there is no way
|
|
that IUP can generate delta for that point, given `coords` and `deltas`.
|
|
"""
|
|
assert len(deltas) == len(coords)
|
|
|
|
n = len(deltas)
|
|
forced = set()
|
|
# Track "last" and "next" points on the contour as we sweep.
|
|
for i in range(len(deltas) - 1, -1, -1):
|
|
ld, lc = deltas[i - 1], coords[i - 1]
|
|
d, c = deltas[i], coords[i]
|
|
nd, nc = deltas[i - n + 1], coords[i - n + 1]
|
|
|
|
for j in (0, 1): # For X and for Y
|
|
cj = c[j]
|
|
dj = d[j]
|
|
lcj = lc[j]
|
|
ldj = ld[j]
|
|
ncj = nc[j]
|
|
ndj = nd[j]
|
|
|
|
if lcj <= ncj:
|
|
c1, c2 = lcj, ncj
|
|
d1, d2 = ldj, ndj
|
|
else:
|
|
c1, c2 = ncj, lcj
|
|
d1, d2 = ndj, ldj
|
|
|
|
force = False
|
|
|
|
# If the two coordinates are the same, then the interpolation
|
|
# algorithm produces the same delta if both deltas are equal,
|
|
# and zero if they differ.
|
|
#
|
|
# This test has to be before the next one.
|
|
if c1 == c2:
|
|
if abs(d1 - d2) > tolerance and abs(dj) > tolerance:
|
|
force = True
|
|
|
|
# If coordinate for current point is between coordinate of adjacent
|
|
# points on the two sides, but the delta for current point is NOT
|
|
# between delta for those adjacent points (considering tolerance
|
|
# allowance), then there is no way that current point can be IUP-ed.
|
|
# Mark it forced.
|
|
elif c1 <= cj <= c2: # and c1 != c2
|
|
if not (min(d1, d2) - tolerance <= dj <= max(d1, d2) + tolerance):
|
|
force = True
|
|
|
|
# Otherwise, the delta should either match the closest, or have the
|
|
# same sign as the interpolation of the two deltas.
|
|
else: # cj < c1 or c2 < cj
|
|
if d1 != d2:
|
|
if cj < c1:
|
|
if (
|
|
abs(dj) > tolerance
|
|
and abs(dj - d1) > tolerance
|
|
and ((dj - tolerance < d1) != (d1 < d2))
|
|
):
|
|
force = True
|
|
else: # c2 < cj
|
|
if (
|
|
abs(dj) > tolerance
|
|
and abs(dj - d2) > tolerance
|
|
and ((d2 < dj + tolerance) != (d1 < d2))
|
|
):
|
|
force = True
|
|
|
|
if force:
|
|
forced.add(i)
|
|
break
|
|
|
|
return forced
|
|
|
|
|
|
@cython.locals(
|
|
i=cython.int,
|
|
j=cython.int,
|
|
best_cost=cython.double,
|
|
best_j=cython.int,
|
|
cost=cython.double,
|
|
forced=set,
|
|
tolerance=cython.double,
|
|
)
|
|
def _iup_contour_optimize_dp(
|
|
deltas: _DeltaSegment,
|
|
coords: _PointSegment,
|
|
forced=set(),
|
|
tolerance: Real = 0,
|
|
lookback: Integral = None,
|
|
):
|
|
"""Straightforward Dynamic-Programming. For each index i, find least-costly encoding of
|
|
points 0 to i where i is explicitly encoded. We find this by considering all previous
|
|
explicit points j and check whether interpolation can fill points between j and i.
|
|
|
|
Note that solution always encodes last point explicitly. Higher-level is responsible
|
|
for removing that restriction.
|
|
|
|
As major speedup, we stop looking further whenever we see a "forced" point."""
|
|
|
|
n = len(deltas)
|
|
if lookback is None:
|
|
lookback = n
|
|
lookback = min(lookback, MAX_LOOKBACK)
|
|
costs = {-1: 0}
|
|
chain = {-1: None}
|
|
for i in range(0, n):
|
|
best_cost = costs[i - 1] + 1
|
|
|
|
costs[i] = best_cost
|
|
chain[i] = i - 1
|
|
|
|
if i - 1 in forced:
|
|
continue
|
|
|
|
for j in range(i - 2, max(i - lookback, -2), -1):
|
|
cost = costs[j] + 1
|
|
|
|
if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance):
|
|
costs[i] = best_cost = cost
|
|
chain[i] = j
|
|
|
|
if j in forced:
|
|
break
|
|
|
|
return chain, costs
|
|
|
|
|
|
def _rot_list(l: list, k: int):
|
|
"""Rotate list by k items forward. Ie. item at position 0 will be
|
|
at position k in returned list. Negative k is allowed."""
|
|
n = len(l)
|
|
k %= n
|
|
if not k:
|
|
return l
|
|
return l[n - k :] + l[: n - k]
|
|
|
|
|
|
def _rot_set(s: set, k: int, n: int):
|
|
k %= n
|
|
if not k:
|
|
return s
|
|
return {(v + k) % n for v in s}
|
|
|
|
|
|
def iup_contour_optimize(
|
|
deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0.0
|
|
) -> _DeltaOrNoneSegment:
|
|
"""For contour with coordinates `coords`, optimize a set of delta
|
|
values `deltas` within error `tolerance`.
|
|
|
|
Returns delta vector that has most number of None items instead of
|
|
the input delta.
|
|
"""
|
|
|
|
n = len(deltas)
|
|
|
|
# Get the easy cases out of the way:
|
|
|
|
# If all are within tolerance distance of 0, encode nothing:
|
|
if all(abs(complex(*p)) <= tolerance for p in deltas):
|
|
return [None] * n
|
|
|
|
# If there's exactly one point, return it:
|
|
if n == 1:
|
|
return deltas
|
|
|
|
# If all deltas are exactly the same, return just one (the first one):
|
|
d0 = deltas[0]
|
|
if all(d0 == d for d in deltas):
|
|
return [d0] + [None] * (n - 1)
|
|
|
|
# Else, solve the general problem using Dynamic Programming.
|
|
|
|
forced = _iup_contour_bound_forced_set(deltas, coords, tolerance)
|
|
# The _iup_contour_optimize_dp() routine returns the optimal encoding
|
|
# solution given the constraint that the last point is always encoded.
|
|
# To remove this constraint, we use two different methods, depending on
|
|
# whether forced set is non-empty or not:
|
|
|
|
# Debugging: Make the next if always take the second branch and observe
|
|
# if the font size changes (reduced); that would mean the forced-set
|
|
# has members it should not have.
|
|
if forced:
|
|
# Forced set is non-empty: rotate the contour start point
|
|
# such that the last point in the list is a forced point.
|
|
k = (n - 1) - max(forced)
|
|
assert k >= 0
|
|
|
|
deltas = _rot_list(deltas, k)
|
|
coords = _rot_list(coords, k)
|
|
forced = _rot_set(forced, k, n)
|
|
|
|
# Debugging: Pass a set() instead of forced variable to the next call
|
|
# to exercise forced-set computation for under-counting.
|
|
chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance)
|
|
|
|
# Assemble solution.
|
|
solution = set()
|
|
i = n - 1
|
|
while i is not None:
|
|
solution.add(i)
|
|
i = chain[i]
|
|
solution.remove(-1)
|
|
|
|
# if not forced <= solution:
|
|
# print("coord", coords)
|
|
# print("deltas", deltas)
|
|
# print("len", len(deltas))
|
|
assert forced <= solution, (forced, solution)
|
|
|
|
deltas = [deltas[i] if i in solution else None for i in range(n)]
|
|
|
|
deltas = _rot_list(deltas, -k)
|
|
else:
|
|
# Repeat the contour an extra time, solve the new case, then look for solutions of the
|
|
# circular n-length problem in the solution for new linear case. I cannot prove that
|
|
# this always produces the optimal solution...
|
|
chain, costs = _iup_contour_optimize_dp(
|
|
deltas + deltas, coords + coords, forced, tolerance, n
|
|
)
|
|
best_sol, best_cost = None, n + 1
|
|
|
|
for start in range(n - 1, len(costs) - 1):
|
|
# Assemble solution.
|
|
solution = set()
|
|
i = start
|
|
while i > start - n:
|
|
solution.add(i % n)
|
|
i = chain[i]
|
|
if i == start - n:
|
|
cost = costs[start] - costs[start - n]
|
|
if cost <= best_cost:
|
|
best_sol, best_cost = solution, cost
|
|
|
|
# if not forced <= best_sol:
|
|
# print("coord", coords)
|
|
# print("deltas", deltas)
|
|
# print("len", len(deltas))
|
|
assert forced <= best_sol, (forced, best_sol)
|
|
|
|
deltas = [deltas[i] if i in best_sol else None for i in range(n)]
|
|
|
|
return deltas
|
|
|
|
|
|
def iup_delta_optimize(
|
|
deltas: _DeltaSegment,
|
|
coords: _PointSegment,
|
|
ends: _Endpoints,
|
|
tolerance: Real = 0.0,
|
|
) -> _DeltaOrNoneSegment:
|
|
"""For the outline given in `coords`, with contour endpoints given
|
|
in sorted increasing order in `ends`, optimize a set of delta
|
|
values `deltas` within error `tolerance`.
|
|
|
|
Returns delta vector that has most number of None items instead of
|
|
the input delta.
|
|
"""
|
|
assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
|
|
n = len(coords)
|
|
ends = ends + [n - 4, n - 3, n - 2, n - 1]
|
|
out = []
|
|
start = 0
|
|
for end in ends:
|
|
contour = iup_contour_optimize(
|
|
deltas[start : end + 1], coords[start : end + 1], tolerance
|
|
)
|
|
assert len(contour) == end - start + 1
|
|
out.extend(contour)
|
|
start = end + 1
|
|
|
|
return out
|