Traktor/myenv/Lib/site-packages/matplotlib/axes/_axes.pyi
2024-05-23 01:57:24 +02:00

773 lines
25 KiB
Python

from matplotlib.axes._base import _AxesBase
from matplotlib.axes._secondary_axes import SecondaryAxis
from matplotlib.artist import Artist
from matplotlib.backend_bases import RendererBase
from matplotlib.collections import (
Collection,
LineCollection,
PathCollection,
PolyCollection,
EventCollection,
QuadMesh,
)
from matplotlib.colors import Colormap, Normalize
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
from matplotlib.contour import ContourSet, QuadContourSet
from matplotlib.image import AxesImage, PcolorImage
from matplotlib.legend import Legend
from matplotlib.legend_handler import HandlerBase
from matplotlib.lines import Line2D, AxLine
from matplotlib.mlab import GaussianKDE
from matplotlib.patches import Rectangle, FancyArrow, Polygon, StepPatch, Wedge
from matplotlib.quiver import Quiver, QuiverKey, Barbs
from matplotlib.text import Annotation, Text
from matplotlib.transforms import Transform, Bbox
import matplotlib.tri as mtri
import matplotlib.table as mtable
import matplotlib.stackplot as mstack
import matplotlib.streamplot as mstream
import datetime
import PIL.Image
from collections.abc import Callable, Iterable, Sequence
from typing import Any, Literal, overload
import numpy as np
from numpy.typing import ArrayLike
from matplotlib.typing import ColorType, MarkerType, LineStyleType
class Axes(_AxesBase):
def get_title(self, loc: Literal["left", "center", "right"] = ...) -> str: ...
def set_title(
self,
label: str,
fontdict: dict[str, Any] | None = ...,
loc: Literal["left", "center", "right"] | None = ...,
pad: float | None = ...,
*,
y: float | None = ...,
**kwargs
) -> Text: ...
def get_legend_handles_labels(
self, legend_handler_map: dict[type, HandlerBase] | None = ...
) -> tuple[list[Artist], list[Any]]: ...
legend_: Legend | None
@overload
def legend(self) -> Legend: ...
@overload
def legend(self, handles: Iterable[Artist | tuple[Artist, ...]], labels: Iterable[str], **kwargs) -> Legend: ...
@overload
def legend(self, *, handles: Iterable[Artist | tuple[Artist, ...]], **kwargs) -> Legend: ...
@overload
def legend(self, labels: Iterable[str], **kwargs) -> Legend: ...
@overload
def legend(self, **kwargs) -> Legend: ...
def inset_axes(
self,
bounds: tuple[float, float, float, float],
*,
transform: Transform | None = ...,
zorder: float = ...,
**kwargs
) -> Axes: ...
def indicate_inset(
self,
bounds: tuple[float, float, float, float],
inset_ax: Axes | None = ...,
*,
transform: Transform | None = ...,
facecolor: ColorType = ...,
edgecolor: ColorType = ...,
alpha: float = ...,
zorder: float = ...,
**kwargs
) -> Rectangle: ...
def indicate_inset_zoom(self, inset_ax: Axes, **kwargs) -> Rectangle: ...
def secondary_xaxis(
self,
location: Literal["top", "bottom"] | float,
*,
functions: tuple[
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
]
| Transform
| None = ...,
transform: Transform | None = ...,
**kwargs
) -> SecondaryAxis: ...
def secondary_yaxis(
self,
location: Literal["left", "right"] | float,
*,
functions: tuple[
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
]
| Transform
| None = ...,
transform: Transform | None = ...,
**kwargs
) -> SecondaryAxis: ...
def text(
self,
x: float,
y: float,
s: str,
fontdict: dict[str, Any] | None = ...,
**kwargs
) -> Text: ...
def annotate(
self,
text: str,
xy: tuple[float, float],
xytext: tuple[float, float] | None = ...,
xycoords: str
| Artist
| Transform
| Callable[[RendererBase], Bbox | Transform]
| tuple[float, float] = ...,
textcoords: str
| Artist
| Transform
| Callable[[RendererBase], Bbox | Transform]
| tuple[float, float]
| None = ...,
arrowprops: dict[str, Any] | None = ...,
annotation_clip: bool | None = ...,
**kwargs
) -> Annotation: ...
def axhline(
self, y: float = ..., xmin: float = ..., xmax: float = ..., **kwargs
) -> Line2D: ...
def axvline(
self, x: float = ..., ymin: float = ..., ymax: float = ..., **kwargs
) -> Line2D: ...
# TODO: Could separate the xy2 and slope signatures
def axline(
self,
xy1: tuple[float, float],
xy2: tuple[float, float] | None = ...,
*,
slope: float | None = ...,
**kwargs
) -> AxLine: ...
def axhspan(
self, ymin: float, ymax: float, xmin: float = ..., xmax: float = ..., **kwargs
) -> Polygon: ...
def axvspan(
self, xmin: float, xmax: float, ymin: float = ..., ymax: float = ..., **kwargs
) -> Polygon: ...
def hlines(
self,
y: float | ArrayLike,
xmin: float | ArrayLike,
xmax: float | ArrayLike,
colors: ColorType | Sequence[ColorType] | None = ...,
linestyles: LineStyleType = ...,
label: str = ...,
*,
data=...,
**kwargs
) -> LineCollection: ...
def vlines(
self,
x: float | ArrayLike,
ymin: float | ArrayLike,
ymax: float | ArrayLike,
colors: ColorType | Sequence[ColorType] | None = ...,
linestyles: LineStyleType = ...,
label: str = ...,
*,
data=...,
**kwargs
) -> LineCollection: ...
def eventplot(
self,
positions: ArrayLike | Sequence[ArrayLike],
orientation: Literal["horizontal", "vertical"] = ...,
lineoffsets: float | Sequence[float] = ...,
linelengths: float | Sequence[float] = ...,
linewidths: float | Sequence[float] | None = ...,
colors: ColorType | Sequence[ColorType] | None = ...,
alpha: float | Sequence[float] | None = ...,
linestyles: LineStyleType | Sequence[LineStyleType] = ...,
*,
data=...,
**kwargs
) -> EventCollection: ...
def plot(
self,
*args: float | ArrayLike | str,
scalex: bool = ...,
scaley: bool = ...,
data = ...,
**kwargs
) -> list[Line2D]: ...
def plot_date(
self,
x: ArrayLike,
y: ArrayLike,
fmt: str = ...,
tz: str | datetime.tzinfo | None = ...,
xdate: bool = ...,
ydate: bool = ...,
*,
data=...,
**kwargs
) -> list[Line2D]: ...
def loglog(self, *args, **kwargs) -> list[Line2D]: ...
def semilogx(self, *args, **kwargs) -> list[Line2D]: ...
def semilogy(self, *args, **kwargs) -> list[Line2D]: ...
def acorr(
self, x: ArrayLike, *, data=..., **kwargs
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
def xcorr(
self,
x: ArrayLike,
y: ArrayLike,
normed: bool = ...,
detrend: Callable[[ArrayLike], ArrayLike] = ...,
usevlines: bool = ...,
maxlags: int = ...,
*,
data = ...,
**kwargs
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
def step(
self,
x: ArrayLike,
y: ArrayLike,
*args,
where: Literal["pre", "post", "mid"] = ...,
data = ...,
**kwargs
) -> list[Line2D]: ...
def bar(
self,
x: float | ArrayLike,
height: float | ArrayLike,
width: float | ArrayLike = ...,
bottom: float | ArrayLike | None = ...,
*,
align: Literal["center", "edge"] = ...,
data = ...,
**kwargs
) -> BarContainer: ...
def barh(
self,
y: float | ArrayLike,
width: float | ArrayLike,
height: float | ArrayLike = ...,
left: float | ArrayLike | None = ...,
*,
align: Literal["center", "edge"] = ...,
data = ...,
**kwargs
) -> BarContainer: ...
def bar_label(
self,
container: BarContainer,
labels: ArrayLike | None = ...,
*,
fmt: str | Callable[[float], str] = ...,
label_type: Literal["center", "edge"] = ...,
padding: float = ...,
**kwargs
) -> list[Annotation]: ...
def broken_barh(
self,
xranges: Sequence[tuple[float, float]],
yrange: tuple[float, float],
*,
data=...,
**kwargs
) -> PolyCollection: ...
def stem(
self,
*args: ArrayLike | str,
linefmt: str | None = ...,
markerfmt: str | None = ...,
basefmt: str | None = ...,
bottom: float = ...,
label: str | None = ...,
orientation: Literal["vertical", "horizontal"] = ...,
data=...,
) -> StemContainer: ...
# TODO: data kwarg preprocessor?
def pie(
self,
x: ArrayLike,
explode: ArrayLike | None = ...,
labels: Sequence[str] | None = ...,
colors: ColorType | Sequence[ColorType] | None = ...,
autopct: str | Callable[[float], str] | None = ...,
pctdistance: float = ...,
shadow: bool = ...,
labeldistance: float | None = ...,
startangle: float = ...,
radius: float = ...,
counterclock: bool = ...,
wedgeprops: dict[str, Any] | None = ...,
textprops: dict[str, Any] | None = ...,
center: tuple[float, float] = ...,
frame: bool = ...,
rotatelabels: bool = ...,
*,
normalize: bool = ...,
hatch: str | Sequence[str] | None = ...,
data=...,
) -> tuple[list[Wedge], list[Text]] | tuple[
list[Wedge], list[Text], list[Text]
]: ...
def errorbar(
self,
x: float | ArrayLike,
y: float | ArrayLike,
yerr: float | ArrayLike | None = ...,
xerr: float | ArrayLike | None = ...,
fmt: str = ...,
ecolor: ColorType | None = ...,
elinewidth: float | None = ...,
capsize: float | None = ...,
barsabove: bool = ...,
lolims: bool | ArrayLike = ...,
uplims: bool | ArrayLike = ...,
xlolims: bool | ArrayLike = ...,
xuplims: bool | ArrayLike = ...,
errorevery: int | tuple[int, int] = ...,
capthick: float | None = ...,
*,
data=...,
**kwargs
) -> ErrorbarContainer: ...
def boxplot(
self,
x: ArrayLike | Sequence[ArrayLike],
notch: bool | None = ...,
sym: str | None = ...,
vert: bool | None = ...,
whis: float | tuple[float, float] | None = ...,
positions: ArrayLike | None = ...,
widths: float | ArrayLike | None = ...,
patch_artist: bool | None = ...,
bootstrap: int | None = ...,
usermedians: ArrayLike | None = ...,
conf_intervals: ArrayLike | None = ...,
meanline: bool | None = ...,
showmeans: bool | None = ...,
showcaps: bool | None = ...,
showbox: bool | None = ...,
showfliers: bool | None = ...,
boxprops: dict[str, Any] | None = ...,
tick_labels: Sequence[str] | None = ...,
flierprops: dict[str, Any] | None = ...,
medianprops: dict[str, Any] | None = ...,
meanprops: dict[str, Any] | None = ...,
capprops: dict[str, Any] | None = ...,
whiskerprops: dict[str, Any] | None = ...,
manage_ticks: bool = ...,
autorange: bool = ...,
zorder: float | None = ...,
capwidths: float | ArrayLike | None = ...,
label: Sequence[str] | None = ...,
*,
data=...,
) -> dict[str, Any]: ...
def bxp(
self,
bxpstats: Sequence[dict[str, Any]],
positions: ArrayLike | None = ...,
widths: float | ArrayLike | None = ...,
vert: bool = ...,
patch_artist: bool = ...,
shownotches: bool = ...,
showmeans: bool = ...,
showcaps: bool = ...,
showbox: bool = ...,
showfliers: bool = ...,
boxprops: dict[str, Any] | None = ...,
whiskerprops: dict[str, Any] | None = ...,
flierprops: dict[str, Any] | None = ...,
medianprops: dict[str, Any] | None = ...,
capprops: dict[str, Any] | None = ...,
meanprops: dict[str, Any] | None = ...,
meanline: bool = ...,
manage_ticks: bool = ...,
zorder: float | None = ...,
capwidths: float | ArrayLike | None = ...,
label: Sequence[str] | None = ...,
) -> dict[str, Any]: ...
def scatter(
self,
x: float | ArrayLike,
y: float | ArrayLike,
s: float | ArrayLike | None = ...,
c: ArrayLike | Sequence[ColorType] | ColorType | None = ...,
marker: MarkerType | None = ...,
cmap: str | Colormap | None = ...,
norm: str | Normalize | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
alpha: float | None = ...,
linewidths: float | Sequence[float] | None = ...,
*,
edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = ...,
plotnonfinite: bool = ...,
data=...,
**kwargs
) -> PathCollection: ...
def hexbin(
self,
x: ArrayLike,
y: ArrayLike,
C: ArrayLike | None = ...,
gridsize: int | tuple[int, int] = ...,
bins: Literal["log"] | int | Sequence[float] | None = ...,
xscale: Literal["linear", "log"] = ...,
yscale: Literal["linear", "log"] = ...,
extent: tuple[float, float, float, float] | None = ...,
cmap: str | Colormap | None = ...,
norm: str | Normalize | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
alpha: float | None = ...,
linewidths: float | None = ...,
edgecolors: Literal["face", "none"] | ColorType = ...,
reduce_C_function: Callable[[np.ndarray | list[float]], float] = ...,
mincnt: int | None = ...,
marginals: bool = ...,
*,
data=...,
**kwargs
) -> PolyCollection: ...
def arrow(
self, x: float, y: float, dx: float, dy: float, **kwargs
) -> FancyArrow: ...
def quiverkey(
self, Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs
) -> QuiverKey: ...
def quiver(self, *args, data=..., **kwargs) -> Quiver: ...
def barbs(self, *args, data=..., **kwargs) -> Barbs: ...
def fill(self, *args, data=..., **kwargs) -> list[Polygon]: ...
def fill_between(
self,
x: ArrayLike,
y1: ArrayLike | float,
y2: ArrayLike | float = ...,
where: Sequence[bool] | None = ...,
interpolate: bool = ...,
step: Literal["pre", "post", "mid"] | None = ...,
*,
data=...,
**kwargs
) -> PolyCollection: ...
def fill_betweenx(
self,
y: ArrayLike,
x1: ArrayLike | float,
x2: ArrayLike | float = ...,
where: Sequence[bool] | None = ...,
step: Literal["pre", "post", "mid"] | None = ...,
interpolate: bool = ...,
*,
data=...,
**kwargs
) -> PolyCollection: ...
def imshow(
self,
X: ArrayLike | PIL.Image.Image,
cmap: str | Colormap | None = ...,
norm: str | Normalize | None = ...,
*,
aspect: Literal["equal", "auto"] | float | None = ...,
interpolation: str | None = ...,
alpha: float | ArrayLike | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
origin: Literal["upper", "lower"] | None = ...,
extent: tuple[float, float, float, float] | None = ...,
interpolation_stage: Literal["data", "rgba"] | None = ...,
filternorm: bool = ...,
filterrad: float = ...,
resample: bool | None = ...,
url: str | None = ...,
data=...,
**kwargs
) -> AxesImage: ...
def pcolor(
self,
*args: ArrayLike,
shading: Literal["flat", "nearest", "auto"] | None = ...,
alpha: float | None = ...,
norm: str | Normalize | None = ...,
cmap: str | Colormap | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
data=...,
**kwargs
) -> Collection: ...
def pcolormesh(
self,
*args: ArrayLike,
alpha: float | None = ...,
norm: str | Normalize | None = ...,
cmap: str | Colormap | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
shading: Literal["flat", "nearest", "gouraud", "auto"] | None = ...,
antialiased: bool = ...,
data=...,
**kwargs
) -> QuadMesh: ...
def pcolorfast(
self,
*args: ArrayLike | tuple[float, float],
alpha: float | None = ...,
norm: str | Normalize | None = ...,
cmap: str | Colormap | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
data=...,
**kwargs
) -> AxesImage | PcolorImage | QuadMesh: ...
def contour(self, *args, data=..., **kwargs) -> QuadContourSet: ...
def contourf(self, *args, data=..., **kwargs) -> QuadContourSet: ...
def clabel(
self, CS: ContourSet, levels: ArrayLike | None = ..., **kwargs
) -> list[Text]: ...
def hist(
self,
x: ArrayLike | Sequence[ArrayLike],
bins: int | Sequence[float] | str | None = ...,
range: tuple[float, float] | None = ...,
density: bool = ...,
weights: ArrayLike | None = ...,
cumulative: bool | float = ...,
bottom: ArrayLike | float | None = ...,
histtype: Literal["bar", "barstacked", "step", "stepfilled"] = ...,
align: Literal["left", "mid", "right"] = ...,
orientation: Literal["vertical", "horizontal"] = ...,
rwidth: float | None = ...,
log: bool = ...,
color: ColorType | Sequence[ColorType] | None = ...,
label: str | Sequence[str] | None = ...,
stacked: bool = ...,
*,
data=...,
**kwargs
) -> tuple[
np.ndarray | list[np.ndarray],
np.ndarray,
BarContainer | Polygon | list[BarContainer | Polygon],
]: ...
def stairs(
self,
values: ArrayLike,
edges: ArrayLike | None = ...,
*,
orientation: Literal["vertical", "horizontal"] = ...,
baseline: float | ArrayLike | None = ...,
fill: bool = ...,
data=...,
**kwargs
) -> StepPatch: ...
def hist2d(
self,
x: ArrayLike,
y: ArrayLike,
bins: None
| int
| tuple[int, int]
| ArrayLike
| tuple[ArrayLike, ArrayLike] = ...,
range: ArrayLike | None = ...,
density: bool = ...,
weights: ArrayLike | None = ...,
cmin: float | None = ...,
cmax: float | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]: ...
def ecdf(
self,
x: ArrayLike,
weights: ArrayLike | None = ...,
*,
complementary: bool=...,
orientation: Literal["vertical", "horizonatal"]=...,
compress: bool=...,
data=...,
**kwargs
) -> Line2D: ...
def psd(
self,
x: ArrayLike,
NFFT: int | None = ...,
Fs: float | None = ...,
Fc: int | None = ...,
detrend: Literal["none", "mean", "linear"]
| Callable[[ArrayLike], ArrayLike]
| None = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
noverlap: int | None = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] | None = ...,
scale_by_freq: bool | None = ...,
return_line: bool | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
def csd(
self,
x: ArrayLike,
y: ArrayLike,
NFFT: int | None = ...,
Fs: float | None = ...,
Fc: int | None = ...,
detrend: Literal["none", "mean", "linear"]
| Callable[[ArrayLike], ArrayLike]
| None = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
noverlap: int | None = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] | None = ...,
scale_by_freq: bool | None = ...,
return_line: bool | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
def magnitude_spectrum(
self,
x: ArrayLike,
Fs: float | None = ...,
Fc: int | None = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] | None = ...,
scale: Literal["default", "linear", "dB"] | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
def angle_spectrum(
self,
x: ArrayLike,
Fs: float | None = ...,
Fc: int | None = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
def phase_spectrum(
self,
x: ArrayLike,
Fs: float | None = ...,
Fc: int | None = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
def cohere(
self,
x: ArrayLike,
y: ArrayLike,
NFFT: int = ...,
Fs: float = ...,
Fc: int = ...,
detrend: Literal["none", "mean", "linear"]
| Callable[[ArrayLike], ArrayLike] = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ...,
noverlap: int = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] = ...,
scale_by_freq: bool | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray]: ...
def specgram(
self,
x: ArrayLike,
NFFT: int | None = ...,
Fs: float | None = ...,
Fc: int | None = ...,
detrend: Literal["none", "mean", "linear"]
| Callable[[ArrayLike], ArrayLike]
| None = ...,
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
noverlap: int | None = ...,
cmap: str | Colormap | None = ...,
xextent: tuple[float, float] | None = ...,
pad_to: int | None = ...,
sides: Literal["default", "onesided", "twosided"] | None = ...,
scale_by_freq: bool | None = ...,
mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = ...,
scale: Literal["default", "linear", "dB"] | None = ...,
vmin: float | None = ...,
vmax: float | None = ...,
*,
data=...,
**kwargs
) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]: ...
def spy(
self,
Z: ArrayLike,
precision: float | Literal["present"] = ...,
marker: str | None = ...,
markersize: float | None = ...,
aspect: Literal["equal", "auto"] | float | None = ...,
origin: Literal["upper", "lower"] = ...,
**kwargs
) -> AxesImage: ...
def matshow(self, Z: ArrayLike, **kwargs) -> AxesImage: ...
def violinplot(
self,
dataset: ArrayLike | Sequence[ArrayLike],
positions: ArrayLike | None = ...,
vert: bool = ...,
widths: float | ArrayLike = ...,
showmeans: bool = ...,
showextrema: bool = ...,
showmedians: bool = ...,
quantiles: Sequence[float | Sequence[float]] | None = ...,
points: int = ...,
bw_method: Literal["scott", "silverman"]
| float
| Callable[[GaussianKDE], float]
| None = ...,
side: Literal["both", "low", "high"] = ...,
*,
data=...,
) -> dict[str, Collection]: ...
def violin(
self,
vpstats: Sequence[dict[str, Any]],
positions: ArrayLike | None = ...,
vert: bool = ...,
widths: float | ArrayLike = ...,
showmeans: bool = ...,
showextrema: bool = ...,
showmedians: bool = ...,
side: Literal["both", "low", "high"] = ...,
) -> dict[str, Collection]: ...
table = mtable.table
stackplot = mstack.stackplot
streamplot = mstream.streamplot
tricontour = mtri.tricontour
tricontourf = mtri.tricontourf
tripcolor = mtri.tripcolor
triplot = mtri.triplot