773 lines
25 KiB
Python
773 lines
25 KiB
Python
from matplotlib.axes._base import _AxesBase
|
|
from matplotlib.axes._secondary_axes import SecondaryAxis
|
|
|
|
from matplotlib.artist import Artist
|
|
from matplotlib.backend_bases import RendererBase
|
|
from matplotlib.collections import (
|
|
Collection,
|
|
LineCollection,
|
|
PathCollection,
|
|
PolyCollection,
|
|
EventCollection,
|
|
QuadMesh,
|
|
)
|
|
from matplotlib.colors import Colormap, Normalize
|
|
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
|
|
from matplotlib.contour import ContourSet, QuadContourSet
|
|
from matplotlib.image import AxesImage, PcolorImage
|
|
from matplotlib.legend import Legend
|
|
from matplotlib.legend_handler import HandlerBase
|
|
from matplotlib.lines import Line2D, AxLine
|
|
from matplotlib.mlab import GaussianKDE
|
|
from matplotlib.patches import Rectangle, FancyArrow, Polygon, StepPatch, Wedge
|
|
from matplotlib.quiver import Quiver, QuiverKey, Barbs
|
|
from matplotlib.text import Annotation, Text
|
|
from matplotlib.transforms import Transform, Bbox
|
|
import matplotlib.tri as mtri
|
|
import matplotlib.table as mtable
|
|
import matplotlib.stackplot as mstack
|
|
import matplotlib.streamplot as mstream
|
|
|
|
import datetime
|
|
import PIL.Image
|
|
from collections.abc import Callable, Iterable, Sequence
|
|
from typing import Any, Literal, overload
|
|
import numpy as np
|
|
from numpy.typing import ArrayLike
|
|
from matplotlib.typing import ColorType, MarkerType, LineStyleType
|
|
|
|
class Axes(_AxesBase):
|
|
def get_title(self, loc: Literal["left", "center", "right"] = ...) -> str: ...
|
|
def set_title(
|
|
self,
|
|
label: str,
|
|
fontdict: dict[str, Any] | None = ...,
|
|
loc: Literal["left", "center", "right"] | None = ...,
|
|
pad: float | None = ...,
|
|
*,
|
|
y: float | None = ...,
|
|
**kwargs
|
|
) -> Text: ...
|
|
def get_legend_handles_labels(
|
|
self, legend_handler_map: dict[type, HandlerBase] | None = ...
|
|
) -> tuple[list[Artist], list[Any]]: ...
|
|
legend_: Legend | None
|
|
|
|
@overload
|
|
def legend(self) -> Legend: ...
|
|
@overload
|
|
def legend(self, handles: Iterable[Artist | tuple[Artist, ...]], labels: Iterable[str], **kwargs) -> Legend: ...
|
|
@overload
|
|
def legend(self, *, handles: Iterable[Artist | tuple[Artist, ...]], **kwargs) -> Legend: ...
|
|
@overload
|
|
def legend(self, labels: Iterable[str], **kwargs) -> Legend: ...
|
|
@overload
|
|
def legend(self, **kwargs) -> Legend: ...
|
|
|
|
def inset_axes(
|
|
self,
|
|
bounds: tuple[float, float, float, float],
|
|
*,
|
|
transform: Transform | None = ...,
|
|
zorder: float = ...,
|
|
**kwargs
|
|
) -> Axes: ...
|
|
def indicate_inset(
|
|
self,
|
|
bounds: tuple[float, float, float, float],
|
|
inset_ax: Axes | None = ...,
|
|
*,
|
|
transform: Transform | None = ...,
|
|
facecolor: ColorType = ...,
|
|
edgecolor: ColorType = ...,
|
|
alpha: float = ...,
|
|
zorder: float = ...,
|
|
**kwargs
|
|
) -> Rectangle: ...
|
|
def indicate_inset_zoom(self, inset_ax: Axes, **kwargs) -> Rectangle: ...
|
|
def secondary_xaxis(
|
|
self,
|
|
location: Literal["top", "bottom"] | float,
|
|
*,
|
|
functions: tuple[
|
|
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
|
|
]
|
|
| Transform
|
|
| None = ...,
|
|
transform: Transform | None = ...,
|
|
**kwargs
|
|
) -> SecondaryAxis: ...
|
|
def secondary_yaxis(
|
|
self,
|
|
location: Literal["left", "right"] | float,
|
|
*,
|
|
functions: tuple[
|
|
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
|
|
]
|
|
| Transform
|
|
| None = ...,
|
|
transform: Transform | None = ...,
|
|
**kwargs
|
|
) -> SecondaryAxis: ...
|
|
def text(
|
|
self,
|
|
x: float,
|
|
y: float,
|
|
s: str,
|
|
fontdict: dict[str, Any] | None = ...,
|
|
**kwargs
|
|
) -> Text: ...
|
|
def annotate(
|
|
self,
|
|
text: str,
|
|
xy: tuple[float, float],
|
|
xytext: tuple[float, float] | None = ...,
|
|
xycoords: str
|
|
| Artist
|
|
| Transform
|
|
| Callable[[RendererBase], Bbox | Transform]
|
|
| tuple[float, float] = ...,
|
|
textcoords: str
|
|
| Artist
|
|
| Transform
|
|
| Callable[[RendererBase], Bbox | Transform]
|
|
| tuple[float, float]
|
|
| None = ...,
|
|
arrowprops: dict[str, Any] | None = ...,
|
|
annotation_clip: bool | None = ...,
|
|
**kwargs
|
|
) -> Annotation: ...
|
|
def axhline(
|
|
self, y: float = ..., xmin: float = ..., xmax: float = ..., **kwargs
|
|
) -> Line2D: ...
|
|
def axvline(
|
|
self, x: float = ..., ymin: float = ..., ymax: float = ..., **kwargs
|
|
) -> Line2D: ...
|
|
|
|
# TODO: Could separate the xy2 and slope signatures
|
|
def axline(
|
|
self,
|
|
xy1: tuple[float, float],
|
|
xy2: tuple[float, float] | None = ...,
|
|
*,
|
|
slope: float | None = ...,
|
|
**kwargs
|
|
) -> AxLine: ...
|
|
def axhspan(
|
|
self, ymin: float, ymax: float, xmin: float = ..., xmax: float = ..., **kwargs
|
|
) -> Polygon: ...
|
|
def axvspan(
|
|
self, xmin: float, xmax: float, ymin: float = ..., ymax: float = ..., **kwargs
|
|
) -> Polygon: ...
|
|
def hlines(
|
|
self,
|
|
y: float | ArrayLike,
|
|
xmin: float | ArrayLike,
|
|
xmax: float | ArrayLike,
|
|
colors: ColorType | Sequence[ColorType] | None = ...,
|
|
linestyles: LineStyleType = ...,
|
|
label: str = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> LineCollection: ...
|
|
def vlines(
|
|
self,
|
|
x: float | ArrayLike,
|
|
ymin: float | ArrayLike,
|
|
ymax: float | ArrayLike,
|
|
colors: ColorType | Sequence[ColorType] | None = ...,
|
|
linestyles: LineStyleType = ...,
|
|
label: str = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> LineCollection: ...
|
|
def eventplot(
|
|
self,
|
|
positions: ArrayLike | Sequence[ArrayLike],
|
|
orientation: Literal["horizontal", "vertical"] = ...,
|
|
lineoffsets: float | Sequence[float] = ...,
|
|
linelengths: float | Sequence[float] = ...,
|
|
linewidths: float | Sequence[float] | None = ...,
|
|
colors: ColorType | Sequence[ColorType] | None = ...,
|
|
alpha: float | Sequence[float] | None = ...,
|
|
linestyles: LineStyleType | Sequence[LineStyleType] = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> EventCollection: ...
|
|
def plot(
|
|
self,
|
|
*args: float | ArrayLike | str,
|
|
scalex: bool = ...,
|
|
scaley: bool = ...,
|
|
data = ...,
|
|
**kwargs
|
|
) -> list[Line2D]: ...
|
|
def plot_date(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
fmt: str = ...,
|
|
tz: str | datetime.tzinfo | None = ...,
|
|
xdate: bool = ...,
|
|
ydate: bool = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> list[Line2D]: ...
|
|
def loglog(self, *args, **kwargs) -> list[Line2D]: ...
|
|
def semilogx(self, *args, **kwargs) -> list[Line2D]: ...
|
|
def semilogy(self, *args, **kwargs) -> list[Line2D]: ...
|
|
def acorr(
|
|
self, x: ArrayLike, *, data=..., **kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
|
|
def xcorr(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
normed: bool = ...,
|
|
detrend: Callable[[ArrayLike], ArrayLike] = ...,
|
|
usevlines: bool = ...,
|
|
maxlags: int = ...,
|
|
*,
|
|
data = ...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
|
|
def step(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
*args,
|
|
where: Literal["pre", "post", "mid"] = ...,
|
|
data = ...,
|
|
**kwargs
|
|
) -> list[Line2D]: ...
|
|
def bar(
|
|
self,
|
|
x: float | ArrayLike,
|
|
height: float | ArrayLike,
|
|
width: float | ArrayLike = ...,
|
|
bottom: float | ArrayLike | None = ...,
|
|
*,
|
|
align: Literal["center", "edge"] = ...,
|
|
data = ...,
|
|
**kwargs
|
|
) -> BarContainer: ...
|
|
def barh(
|
|
self,
|
|
y: float | ArrayLike,
|
|
width: float | ArrayLike,
|
|
height: float | ArrayLike = ...,
|
|
left: float | ArrayLike | None = ...,
|
|
*,
|
|
align: Literal["center", "edge"] = ...,
|
|
data = ...,
|
|
**kwargs
|
|
) -> BarContainer: ...
|
|
def bar_label(
|
|
self,
|
|
container: BarContainer,
|
|
labels: ArrayLike | None = ...,
|
|
*,
|
|
fmt: str | Callable[[float], str] = ...,
|
|
label_type: Literal["center", "edge"] = ...,
|
|
padding: float = ...,
|
|
**kwargs
|
|
) -> list[Annotation]: ...
|
|
def broken_barh(
|
|
self,
|
|
xranges: Sequence[tuple[float, float]],
|
|
yrange: tuple[float, float],
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> PolyCollection: ...
|
|
def stem(
|
|
self,
|
|
*args: ArrayLike | str,
|
|
linefmt: str | None = ...,
|
|
markerfmt: str | None = ...,
|
|
basefmt: str | None = ...,
|
|
bottom: float = ...,
|
|
label: str | None = ...,
|
|
orientation: Literal["vertical", "horizontal"] = ...,
|
|
data=...,
|
|
) -> StemContainer: ...
|
|
|
|
# TODO: data kwarg preprocessor?
|
|
def pie(
|
|
self,
|
|
x: ArrayLike,
|
|
explode: ArrayLike | None = ...,
|
|
labels: Sequence[str] | None = ...,
|
|
colors: ColorType | Sequence[ColorType] | None = ...,
|
|
autopct: str | Callable[[float], str] | None = ...,
|
|
pctdistance: float = ...,
|
|
shadow: bool = ...,
|
|
labeldistance: float | None = ...,
|
|
startangle: float = ...,
|
|
radius: float = ...,
|
|
counterclock: bool = ...,
|
|
wedgeprops: dict[str, Any] | None = ...,
|
|
textprops: dict[str, Any] | None = ...,
|
|
center: tuple[float, float] = ...,
|
|
frame: bool = ...,
|
|
rotatelabels: bool = ...,
|
|
*,
|
|
normalize: bool = ...,
|
|
hatch: str | Sequence[str] | None = ...,
|
|
data=...,
|
|
) -> tuple[list[Wedge], list[Text]] | tuple[
|
|
list[Wedge], list[Text], list[Text]
|
|
]: ...
|
|
def errorbar(
|
|
self,
|
|
x: float | ArrayLike,
|
|
y: float | ArrayLike,
|
|
yerr: float | ArrayLike | None = ...,
|
|
xerr: float | ArrayLike | None = ...,
|
|
fmt: str = ...,
|
|
ecolor: ColorType | None = ...,
|
|
elinewidth: float | None = ...,
|
|
capsize: float | None = ...,
|
|
barsabove: bool = ...,
|
|
lolims: bool | ArrayLike = ...,
|
|
uplims: bool | ArrayLike = ...,
|
|
xlolims: bool | ArrayLike = ...,
|
|
xuplims: bool | ArrayLike = ...,
|
|
errorevery: int | tuple[int, int] = ...,
|
|
capthick: float | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> ErrorbarContainer: ...
|
|
def boxplot(
|
|
self,
|
|
x: ArrayLike | Sequence[ArrayLike],
|
|
notch: bool | None = ...,
|
|
sym: str | None = ...,
|
|
vert: bool | None = ...,
|
|
whis: float | tuple[float, float] | None = ...,
|
|
positions: ArrayLike | None = ...,
|
|
widths: float | ArrayLike | None = ...,
|
|
patch_artist: bool | None = ...,
|
|
bootstrap: int | None = ...,
|
|
usermedians: ArrayLike | None = ...,
|
|
conf_intervals: ArrayLike | None = ...,
|
|
meanline: bool | None = ...,
|
|
showmeans: bool | None = ...,
|
|
showcaps: bool | None = ...,
|
|
showbox: bool | None = ...,
|
|
showfliers: bool | None = ...,
|
|
boxprops: dict[str, Any] | None = ...,
|
|
tick_labels: Sequence[str] | None = ...,
|
|
flierprops: dict[str, Any] | None = ...,
|
|
medianprops: dict[str, Any] | None = ...,
|
|
meanprops: dict[str, Any] | None = ...,
|
|
capprops: dict[str, Any] | None = ...,
|
|
whiskerprops: dict[str, Any] | None = ...,
|
|
manage_ticks: bool = ...,
|
|
autorange: bool = ...,
|
|
zorder: float | None = ...,
|
|
capwidths: float | ArrayLike | None = ...,
|
|
label: Sequence[str] | None = ...,
|
|
*,
|
|
data=...,
|
|
) -> dict[str, Any]: ...
|
|
def bxp(
|
|
self,
|
|
bxpstats: Sequence[dict[str, Any]],
|
|
positions: ArrayLike | None = ...,
|
|
widths: float | ArrayLike | None = ...,
|
|
vert: bool = ...,
|
|
patch_artist: bool = ...,
|
|
shownotches: bool = ...,
|
|
showmeans: bool = ...,
|
|
showcaps: bool = ...,
|
|
showbox: bool = ...,
|
|
showfliers: bool = ...,
|
|
boxprops: dict[str, Any] | None = ...,
|
|
whiskerprops: dict[str, Any] | None = ...,
|
|
flierprops: dict[str, Any] | None = ...,
|
|
medianprops: dict[str, Any] | None = ...,
|
|
capprops: dict[str, Any] | None = ...,
|
|
meanprops: dict[str, Any] | None = ...,
|
|
meanline: bool = ...,
|
|
manage_ticks: bool = ...,
|
|
zorder: float | None = ...,
|
|
capwidths: float | ArrayLike | None = ...,
|
|
label: Sequence[str] | None = ...,
|
|
) -> dict[str, Any]: ...
|
|
def scatter(
|
|
self,
|
|
x: float | ArrayLike,
|
|
y: float | ArrayLike,
|
|
s: float | ArrayLike | None = ...,
|
|
c: ArrayLike | Sequence[ColorType] | ColorType | None = ...,
|
|
marker: MarkerType | None = ...,
|
|
cmap: str | Colormap | None = ...,
|
|
norm: str | Normalize | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
alpha: float | None = ...,
|
|
linewidths: float | Sequence[float] | None = ...,
|
|
*,
|
|
edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = ...,
|
|
plotnonfinite: bool = ...,
|
|
data=...,
|
|
**kwargs
|
|
) -> PathCollection: ...
|
|
def hexbin(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
C: ArrayLike | None = ...,
|
|
gridsize: int | tuple[int, int] = ...,
|
|
bins: Literal["log"] | int | Sequence[float] | None = ...,
|
|
xscale: Literal["linear", "log"] = ...,
|
|
yscale: Literal["linear", "log"] = ...,
|
|
extent: tuple[float, float, float, float] | None = ...,
|
|
cmap: str | Colormap | None = ...,
|
|
norm: str | Normalize | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
alpha: float | None = ...,
|
|
linewidths: float | None = ...,
|
|
edgecolors: Literal["face", "none"] | ColorType = ...,
|
|
reduce_C_function: Callable[[np.ndarray | list[float]], float] = ...,
|
|
mincnt: int | None = ...,
|
|
marginals: bool = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> PolyCollection: ...
|
|
def arrow(
|
|
self, x: float, y: float, dx: float, dy: float, **kwargs
|
|
) -> FancyArrow: ...
|
|
def quiverkey(
|
|
self, Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs
|
|
) -> QuiverKey: ...
|
|
def quiver(self, *args, data=..., **kwargs) -> Quiver: ...
|
|
def barbs(self, *args, data=..., **kwargs) -> Barbs: ...
|
|
def fill(self, *args, data=..., **kwargs) -> list[Polygon]: ...
|
|
def fill_between(
|
|
self,
|
|
x: ArrayLike,
|
|
y1: ArrayLike | float,
|
|
y2: ArrayLike | float = ...,
|
|
where: Sequence[bool] | None = ...,
|
|
interpolate: bool = ...,
|
|
step: Literal["pre", "post", "mid"] | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> PolyCollection: ...
|
|
def fill_betweenx(
|
|
self,
|
|
y: ArrayLike,
|
|
x1: ArrayLike | float,
|
|
x2: ArrayLike | float = ...,
|
|
where: Sequence[bool] | None = ...,
|
|
step: Literal["pre", "post", "mid"] | None = ...,
|
|
interpolate: bool = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> PolyCollection: ...
|
|
def imshow(
|
|
self,
|
|
X: ArrayLike | PIL.Image.Image,
|
|
cmap: str | Colormap | None = ...,
|
|
norm: str | Normalize | None = ...,
|
|
*,
|
|
aspect: Literal["equal", "auto"] | float | None = ...,
|
|
interpolation: str | None = ...,
|
|
alpha: float | ArrayLike | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
origin: Literal["upper", "lower"] | None = ...,
|
|
extent: tuple[float, float, float, float] | None = ...,
|
|
interpolation_stage: Literal["data", "rgba"] | None = ...,
|
|
filternorm: bool = ...,
|
|
filterrad: float = ...,
|
|
resample: bool | None = ...,
|
|
url: str | None = ...,
|
|
data=...,
|
|
**kwargs
|
|
) -> AxesImage: ...
|
|
def pcolor(
|
|
self,
|
|
*args: ArrayLike,
|
|
shading: Literal["flat", "nearest", "auto"] | None = ...,
|
|
alpha: float | None = ...,
|
|
norm: str | Normalize | None = ...,
|
|
cmap: str | Colormap | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
data=...,
|
|
**kwargs
|
|
) -> Collection: ...
|
|
def pcolormesh(
|
|
self,
|
|
*args: ArrayLike,
|
|
alpha: float | None = ...,
|
|
norm: str | Normalize | None = ...,
|
|
cmap: str | Colormap | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
shading: Literal["flat", "nearest", "gouraud", "auto"] | None = ...,
|
|
antialiased: bool = ...,
|
|
data=...,
|
|
**kwargs
|
|
) -> QuadMesh: ...
|
|
def pcolorfast(
|
|
self,
|
|
*args: ArrayLike | tuple[float, float],
|
|
alpha: float | None = ...,
|
|
norm: str | Normalize | None = ...,
|
|
cmap: str | Colormap | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
data=...,
|
|
**kwargs
|
|
) -> AxesImage | PcolorImage | QuadMesh: ...
|
|
def contour(self, *args, data=..., **kwargs) -> QuadContourSet: ...
|
|
def contourf(self, *args, data=..., **kwargs) -> QuadContourSet: ...
|
|
def clabel(
|
|
self, CS: ContourSet, levels: ArrayLike | None = ..., **kwargs
|
|
) -> list[Text]: ...
|
|
def hist(
|
|
self,
|
|
x: ArrayLike | Sequence[ArrayLike],
|
|
bins: int | Sequence[float] | str | None = ...,
|
|
range: tuple[float, float] | None = ...,
|
|
density: bool = ...,
|
|
weights: ArrayLike | None = ...,
|
|
cumulative: bool | float = ...,
|
|
bottom: ArrayLike | float | None = ...,
|
|
histtype: Literal["bar", "barstacked", "step", "stepfilled"] = ...,
|
|
align: Literal["left", "mid", "right"] = ...,
|
|
orientation: Literal["vertical", "horizontal"] = ...,
|
|
rwidth: float | None = ...,
|
|
log: bool = ...,
|
|
color: ColorType | Sequence[ColorType] | None = ...,
|
|
label: str | Sequence[str] | None = ...,
|
|
stacked: bool = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[
|
|
np.ndarray | list[np.ndarray],
|
|
np.ndarray,
|
|
BarContainer | Polygon | list[BarContainer | Polygon],
|
|
]: ...
|
|
def stairs(
|
|
self,
|
|
values: ArrayLike,
|
|
edges: ArrayLike | None = ...,
|
|
*,
|
|
orientation: Literal["vertical", "horizontal"] = ...,
|
|
baseline: float | ArrayLike | None = ...,
|
|
fill: bool = ...,
|
|
data=...,
|
|
**kwargs
|
|
) -> StepPatch: ...
|
|
def hist2d(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
bins: None
|
|
| int
|
|
| tuple[int, int]
|
|
| ArrayLike
|
|
| tuple[ArrayLike, ArrayLike] = ...,
|
|
range: ArrayLike | None = ...,
|
|
density: bool = ...,
|
|
weights: ArrayLike | None = ...,
|
|
cmin: float | None = ...,
|
|
cmax: float | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]: ...
|
|
def ecdf(
|
|
self,
|
|
x: ArrayLike,
|
|
weights: ArrayLike | None = ...,
|
|
*,
|
|
complementary: bool=...,
|
|
orientation: Literal["vertical", "horizonatal"]=...,
|
|
compress: bool=...,
|
|
data=...,
|
|
**kwargs
|
|
) -> Line2D: ...
|
|
def psd(
|
|
self,
|
|
x: ArrayLike,
|
|
NFFT: int | None = ...,
|
|
Fs: float | None = ...,
|
|
Fc: int | None = ...,
|
|
detrend: Literal["none", "mean", "linear"]
|
|
| Callable[[ArrayLike], ArrayLike]
|
|
| None = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
|
|
noverlap: int | None = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] | None = ...,
|
|
scale_by_freq: bool | None = ...,
|
|
return_line: bool | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
|
|
def csd(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
NFFT: int | None = ...,
|
|
Fs: float | None = ...,
|
|
Fc: int | None = ...,
|
|
detrend: Literal["none", "mean", "linear"]
|
|
| Callable[[ArrayLike], ArrayLike]
|
|
| None = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
|
|
noverlap: int | None = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] | None = ...,
|
|
scale_by_freq: bool | None = ...,
|
|
return_line: bool | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
|
|
def magnitude_spectrum(
|
|
self,
|
|
x: ArrayLike,
|
|
Fs: float | None = ...,
|
|
Fc: int | None = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] | None = ...,
|
|
scale: Literal["default", "linear", "dB"] | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
|
|
def angle_spectrum(
|
|
self,
|
|
x: ArrayLike,
|
|
Fs: float | None = ...,
|
|
Fc: int | None = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
|
|
def phase_spectrum(
|
|
self,
|
|
x: ArrayLike,
|
|
Fs: float | None = ...,
|
|
Fc: int | None = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
|
|
def cohere(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
NFFT: int = ...,
|
|
Fs: float = ...,
|
|
Fc: int = ...,
|
|
detrend: Literal["none", "mean", "linear"]
|
|
| Callable[[ArrayLike], ArrayLike] = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ...,
|
|
noverlap: int = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] = ...,
|
|
scale_by_freq: bool | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray]: ...
|
|
def specgram(
|
|
self,
|
|
x: ArrayLike,
|
|
NFFT: int | None = ...,
|
|
Fs: float | None = ...,
|
|
Fc: int | None = ...,
|
|
detrend: Literal["none", "mean", "linear"]
|
|
| Callable[[ArrayLike], ArrayLike]
|
|
| None = ...,
|
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
|
|
noverlap: int | None = ...,
|
|
cmap: str | Colormap | None = ...,
|
|
xextent: tuple[float, float] | None = ...,
|
|
pad_to: int | None = ...,
|
|
sides: Literal["default", "onesided", "twosided"] | None = ...,
|
|
scale_by_freq: bool | None = ...,
|
|
mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = ...,
|
|
scale: Literal["default", "linear", "dB"] | None = ...,
|
|
vmin: float | None = ...,
|
|
vmax: float | None = ...,
|
|
*,
|
|
data=...,
|
|
**kwargs
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]: ...
|
|
def spy(
|
|
self,
|
|
Z: ArrayLike,
|
|
precision: float | Literal["present"] = ...,
|
|
marker: str | None = ...,
|
|
markersize: float | None = ...,
|
|
aspect: Literal["equal", "auto"] | float | None = ...,
|
|
origin: Literal["upper", "lower"] = ...,
|
|
**kwargs
|
|
) -> AxesImage: ...
|
|
def matshow(self, Z: ArrayLike, **kwargs) -> AxesImage: ...
|
|
def violinplot(
|
|
self,
|
|
dataset: ArrayLike | Sequence[ArrayLike],
|
|
positions: ArrayLike | None = ...,
|
|
vert: bool = ...,
|
|
widths: float | ArrayLike = ...,
|
|
showmeans: bool = ...,
|
|
showextrema: bool = ...,
|
|
showmedians: bool = ...,
|
|
quantiles: Sequence[float | Sequence[float]] | None = ...,
|
|
points: int = ...,
|
|
bw_method: Literal["scott", "silverman"]
|
|
| float
|
|
| Callable[[GaussianKDE], float]
|
|
| None = ...,
|
|
side: Literal["both", "low", "high"] = ...,
|
|
*,
|
|
data=...,
|
|
) -> dict[str, Collection]: ...
|
|
def violin(
|
|
self,
|
|
vpstats: Sequence[dict[str, Any]],
|
|
positions: ArrayLike | None = ...,
|
|
vert: bool = ...,
|
|
widths: float | ArrayLike = ...,
|
|
showmeans: bool = ...,
|
|
showextrema: bool = ...,
|
|
showmedians: bool = ...,
|
|
side: Literal["both", "low", "high"] = ...,
|
|
) -> dict[str, Collection]: ...
|
|
|
|
table = mtable.table
|
|
stackplot = mstack.stackplot
|
|
streamplot = mstream.streamplot
|
|
tricontour = mtri.tricontour
|
|
tricontourf = mtri.tricontourf
|
|
tripcolor = mtri.tripcolor
|
|
triplot = mtri.triplot
|