Traktor/myenv/Lib/site-packages/pandas/plotting/_matplotlib/timeseries.py
2024-05-23 01:57:24 +02:00

371 lines
11 KiB
Python

# TODO: Use the fact that axis can have units to simplify the process
from __future__ import annotations
import functools
from typing import (
TYPE_CHECKING,
Any,
cast,
)
import warnings
import numpy as np
from pandas._libs.tslibs import (
BaseOffset,
Period,
to_offset,
)
from pandas._libs.tslibs.dtypes import (
OFFSET_TO_PERIOD_FREQSTR,
FreqGroup,
)
from pandas.core.dtypes.generic import (
ABCDatetimeIndex,
ABCPeriodIndex,
ABCTimedeltaIndex,
)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.converter import (
TimeSeries_DateFormatter,
TimeSeries_DateLocator,
TimeSeries_TimedeltaFormatter,
)
from pandas.tseries.frequencies import (
get_period_alias,
is_subperiod,
is_superperiod,
)
if TYPE_CHECKING:
from datetime import timedelta
from matplotlib.axes import Axes
from pandas._typing import NDFrameT
from pandas import (
DataFrame,
DatetimeIndex,
Index,
PeriodIndex,
Series,
)
# ---------------------------------------------------------------------
# Plotting functions and monkey patches
def maybe_resample(series: Series, ax: Axes, kwargs: dict[str, Any]):
# resample against axes freq if necessary
if "how" in kwargs:
raise ValueError(
"'how' is not a valid keyword for plotting functions. If plotting "
"multiple objects on shared axes, resample manually first."
)
freq, ax_freq = _get_freq(ax, series)
if freq is None: # pragma: no cover
raise ValueError("Cannot use dynamic axis without frequency info")
# Convert DatetimeIndex to PeriodIndex
if isinstance(series.index, ABCDatetimeIndex):
series = series.to_period(freq=freq)
if ax_freq is not None and freq != ax_freq:
if is_superperiod(freq, ax_freq): # upsample input
series = series.copy()
# error: "Index" has no attribute "asfreq"
series.index = series.index.asfreq( # type: ignore[attr-defined]
ax_freq, how="s"
)
freq = ax_freq
elif _is_sup(freq, ax_freq): # one is weekly
# Resampling with PeriodDtype is deprecated, so we convert to
# DatetimeIndex, resample, then convert back.
ser_ts = series.to_timestamp()
ser_d = ser_ts.resample("D").last().dropna()
ser_freq = ser_d.resample(ax_freq).last().dropna()
series = ser_freq.to_period(ax_freq)
freq = ax_freq
elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
_upsample_others(ax, freq, kwargs)
else: # pragma: no cover
raise ValueError("Incompatible frequency conversion")
return freq, series
def _is_sub(f1: str, f2: str) -> bool:
return (f1.startswith("W") and is_subperiod("D", f2)) or (
f2.startswith("W") and is_subperiod(f1, "D")
)
def _is_sup(f1: str, f2: str) -> bool:
return (f1.startswith("W") and is_superperiod("D", f2)) or (
f2.startswith("W") and is_superperiod(f1, "D")
)
def _upsample_others(ax: Axes, freq: BaseOffset, kwargs: dict[str, Any]) -> None:
legend = ax.get_legend()
lines, labels = _replot_ax(ax, freq)
_replot_ax(ax, freq)
other_ax = None
if hasattr(ax, "left_ax"):
other_ax = ax.left_ax
if hasattr(ax, "right_ax"):
other_ax = ax.right_ax
if other_ax is not None:
rlines, rlabels = _replot_ax(other_ax, freq)
lines.extend(rlines)
labels.extend(rlabels)
if legend is not None and kwargs.get("legend", True) and len(lines) > 0:
title: str | None = legend.get_title().get_text()
if title == "None":
title = None
ax.legend(lines, labels, loc="best", title=title)
def _replot_ax(ax: Axes, freq: BaseOffset):
data = getattr(ax, "_plot_data", None)
# clear current axes and data
# TODO #54485
ax._plot_data = [] # type: ignore[attr-defined]
ax.clear()
decorate_axes(ax, freq)
lines = []
labels = []
if data is not None:
for series, plotf, kwds in data:
series = series.copy()
idx = series.index.asfreq(freq, how="S")
series.index = idx
# TODO #54485
ax._plot_data.append((series, plotf, kwds)) # type: ignore[attr-defined]
# for tsplot
if isinstance(plotf, str):
from pandas.plotting._matplotlib import PLOT_CLASSES
plotf = PLOT_CLASSES[plotf]._plot
lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0])
labels.append(pprint_thing(series.name))
return lines, labels
def decorate_axes(ax: Axes, freq: BaseOffset) -> None:
"""Initialize axes for time-series plotting"""
if not hasattr(ax, "_plot_data"):
# TODO #54485
ax._plot_data = [] # type: ignore[attr-defined]
# TODO #54485
ax.freq = freq # type: ignore[attr-defined]
xaxis = ax.get_xaxis()
# TODO #54485
xaxis.freq = freq # type: ignore[attr-defined]
def _get_ax_freq(ax: Axes):
"""
Get the freq attribute of the ax object if set.
Also checks shared axes (eg when using secondary yaxis, sharex=True
or twinx)
"""
ax_freq = getattr(ax, "freq", None)
if ax_freq is None:
# check for left/right ax in case of secondary yaxis
if hasattr(ax, "left_ax"):
ax_freq = getattr(ax.left_ax, "freq", None)
elif hasattr(ax, "right_ax"):
ax_freq = getattr(ax.right_ax, "freq", None)
if ax_freq is None:
# check if a shared ax (sharex/twinx) has already freq set
shared_axes = ax.get_shared_x_axes().get_siblings(ax)
if len(shared_axes) > 1:
for shared_ax in shared_axes:
ax_freq = getattr(shared_ax, "freq", None)
if ax_freq is not None:
break
return ax_freq
def _get_period_alias(freq: timedelta | BaseOffset | str) -> str | None:
if isinstance(freq, BaseOffset):
freqstr = freq.name
else:
freqstr = to_offset(freq, is_period=True).rule_code
return get_period_alias(freqstr)
def _get_freq(ax: Axes, series: Series):
# get frequency from data
freq = getattr(series.index, "freq", None)
if freq is None:
freq = getattr(series.index, "inferred_freq", None)
freq = to_offset(freq, is_period=True)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
freq = _get_period_alias(freq)
return freq, ax_freq
def use_dynamic_x(ax: Axes, data: DataFrame | Series) -> bool:
freq = _get_index_freq(data.index)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
# do not use tsplot if irregular was plotted first
elif (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
freq_str = _get_period_alias(freq)
if freq_str is None:
return False
# FIXME: hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, ABCDatetimeIndex):
# error: "BaseOffset" has no attribute "_period_dtype_code"
freq_str = OFFSET_TO_PERIOD_FREQSTR.get(freq_str, freq_str)
base = to_offset(
freq_str, is_period=True
)._period_dtype_code # type: ignore[attr-defined]
x = data.index
if base <= FreqGroup.FR_DAY.value:
return x[:1].is_normalized
period = Period(x[0], freq_str)
assert isinstance(period, Period)
return period.to_timestamp().tz_localize(x.tz) == x[0]
return True
def _get_index_freq(index: Index) -> BaseOffset | None:
freq = getattr(index, "freq", None)
if freq is None:
freq = getattr(index, "inferred_freq", None)
if freq == "B":
# error: "Index" has no attribute "dayofweek"
weekdays = np.unique(index.dayofweek) # type: ignore[attr-defined]
if (5 in weekdays) or (6 in weekdays):
freq = None
freq = to_offset(freq)
return freq
def maybe_convert_index(ax: Axes, data: NDFrameT) -> NDFrameT:
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, (ABCDatetimeIndex, ABCPeriodIndex)):
freq: str | BaseOffset | None = data.index.freq
if freq is None:
# We only get here for DatetimeIndex
data.index = cast("DatetimeIndex", data.index)
freq = data.index.inferred_freq
freq = to_offset(freq)
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError("Could not get frequency alias for plotting")
freq_str = _get_period_alias(freq)
with warnings.catch_warnings():
# suppress Period[B] deprecation warning
# TODO: need to find an alternative to this before the deprecation
# is enforced!
warnings.filterwarnings(
"ignore",
r"PeriodDtype\[B\] is deprecated",
category=FutureWarning,
)
if isinstance(data.index, ABCDatetimeIndex):
data = data.tz_localize(None).to_period(freq=freq_str)
elif isinstance(data.index, ABCPeriodIndex):
data.index = data.index.asfreq(freq=freq_str)
return data
# Patch methods for subplot.
def _format_coord(freq, t, y) -> str:
time_period = Period(ordinal=int(t), freq=freq)
return f"t = {time_period} y = {y:8f}"
def format_dateaxis(
subplot, freq: BaseOffset, index: DatetimeIndex | PeriodIndex
) -> None:
"""
Pretty-formats the date axis (x-axis).
Major and minor ticks are automatically set for the frequency of the
current underlying series. As the dynamic mode is activated by
default, changing the limits of the x axis will intelligently change
the positions of the ticks.
"""
from matplotlib import pylab
# handle index specific formatting
# Note: DatetimeIndex does not use this
# interface. DatetimeIndex uses matplotlib.date directly
if isinstance(index, ABCPeriodIndex):
majlocator = TimeSeries_DateLocator(
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
)
minlocator = TimeSeries_DateLocator(
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
)
subplot.xaxis.set_major_locator(majlocator)
subplot.xaxis.set_minor_locator(minlocator)
majformatter = TimeSeries_DateFormatter(
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
)
minformatter = TimeSeries_DateFormatter(
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
)
subplot.xaxis.set_major_formatter(majformatter)
subplot.xaxis.set_minor_formatter(minformatter)
# x and y coord info
subplot.format_coord = functools.partial(_format_coord, freq)
elif isinstance(index, ABCTimedeltaIndex):
subplot.xaxis.set_major_formatter(TimeSeries_TimedeltaFormatter())
else:
raise TypeError("index type not supported")
pylab.draw_if_interactive()