1738 lines
59 KiB
Python
1738 lines
59 KiB
Python
from collections import defaultdict
|
|
from datetime import datetime
|
|
from functools import partial
|
|
import math
|
|
import operator
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import IS64
|
|
from pandas.errors import InvalidIndexError
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas.core.dtypes.common import (
|
|
is_any_real_numeric_dtype,
|
|
is_numeric_dtype,
|
|
is_object_dtype,
|
|
)
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
CategoricalIndex,
|
|
DataFrame,
|
|
DatetimeIndex,
|
|
IntervalIndex,
|
|
PeriodIndex,
|
|
RangeIndex,
|
|
Series,
|
|
TimedeltaIndex,
|
|
date_range,
|
|
period_range,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.indexes.api import (
|
|
Index,
|
|
MultiIndex,
|
|
_get_combined_index,
|
|
ensure_index,
|
|
ensure_index_from_sequences,
|
|
)
|
|
|
|
|
|
class TestIndex:
|
|
@pytest.fixture
|
|
def simple_index(self) -> Index:
|
|
return Index(list("abcde"))
|
|
|
|
def test_can_hold_identifiers(self, simple_index):
|
|
index = simple_index
|
|
key = index[0]
|
|
assert index._can_hold_identifiers_and_holds_name(key) is True
|
|
|
|
@pytest.mark.parametrize("index", ["datetime"], indirect=True)
|
|
def test_new_axis(self, index):
|
|
# TODO: a bunch of scattered tests check this deprecation is enforced.
|
|
# de-duplicate/centralize them.
|
|
with pytest.raises(ValueError, match="Multi-dimensional indexing"):
|
|
# GH#30588 multi-dimensional indexing deprecated
|
|
index[None, :]
|
|
|
|
def test_constructor_regular(self, index):
|
|
tm.assert_contains_all(index, index)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_constructor_casting(self, index):
|
|
# casting
|
|
arr = np.array(index)
|
|
new_index = Index(arr)
|
|
tm.assert_contains_all(arr, new_index)
|
|
tm.assert_index_equal(index, new_index)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_constructor_copy(self, index, using_infer_string):
|
|
arr = np.array(index)
|
|
new_index = Index(arr, copy=True, name="name")
|
|
assert isinstance(new_index, Index)
|
|
assert new_index.name == "name"
|
|
if using_infer_string:
|
|
tm.assert_extension_array_equal(
|
|
new_index.values, pd.array(arr, dtype="string[pyarrow_numpy]")
|
|
)
|
|
else:
|
|
tm.assert_numpy_array_equal(arr, new_index.values)
|
|
arr[0] = "SOMEBIGLONGSTRING"
|
|
assert new_index[0] != "SOMEBIGLONGSTRING"
|
|
|
|
@pytest.mark.parametrize("cast_as_obj", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
date_range(
|
|
"2015-01-01 10:00",
|
|
freq="D",
|
|
periods=3,
|
|
tz="US/Eastern",
|
|
name="Green Eggs & Ham",
|
|
), # DTI with tz
|
|
date_range("2015-01-01 10:00", freq="D", periods=3), # DTI no tz
|
|
timedelta_range("1 days", freq="D", periods=3), # td
|
|
period_range("2015-01-01", freq="D", periods=3), # period
|
|
],
|
|
)
|
|
def test_constructor_from_index_dtlike(self, cast_as_obj, index):
|
|
if cast_as_obj:
|
|
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
|
|
result = Index(index.astype(object))
|
|
else:
|
|
result = Index(index)
|
|
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if isinstance(index, DatetimeIndex):
|
|
assert result.tz == index.tz
|
|
if cast_as_obj:
|
|
# GH#23524 check that Index(dti, dtype=object) does not
|
|
# incorrectly raise ValueError, and that nanoseconds are not
|
|
# dropped
|
|
index += pd.Timedelta(nanoseconds=50)
|
|
result = Index(index, dtype=object)
|
|
assert result.dtype == np.object_
|
|
assert list(result) == list(index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index,has_tz",
|
|
[
|
|
(
|
|
date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"),
|
|
True,
|
|
), # datetimetz
|
|
(timedelta_range("1 days", freq="D", periods=3), False), # td
|
|
(period_range("2015-01-01", freq="D", periods=3), False), # period
|
|
],
|
|
)
|
|
def test_constructor_from_series_dtlike(self, index, has_tz):
|
|
result = Index(Series(index))
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if has_tz:
|
|
assert result.tz == index.tz
|
|
|
|
def test_constructor_from_series_freq(self):
|
|
# GH 6273
|
|
# create from a series, passing a freq
|
|
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
|
|
expected = DatetimeIndex(dts, freq="MS")
|
|
|
|
s = Series(pd.to_datetime(dts))
|
|
result = DatetimeIndex(s, freq="MS")
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_from_frame_series_freq(self, using_infer_string):
|
|
# GH 6273
|
|
# create from a series, passing a freq
|
|
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
|
|
expected = DatetimeIndex(dts, freq="MS")
|
|
|
|
df = DataFrame(np.random.default_rng(2).random((5, 3)))
|
|
df["date"] = dts
|
|
result = DatetimeIndex(df["date"], freq="MS")
|
|
dtype = object if not using_infer_string else "string"
|
|
assert df["date"].dtype == dtype
|
|
expected.name = "date"
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
expected = Series(dts, name="date")
|
|
tm.assert_series_equal(df["date"], expected)
|
|
|
|
# GH 6274
|
|
# infer freq of same
|
|
if not using_infer_string:
|
|
# Doesn't work with arrow strings
|
|
freq = pd.infer_freq(df["date"])
|
|
assert freq == "MS"
|
|
|
|
def test_constructor_int_dtype_nan(self):
|
|
# see gh-15187
|
|
data = [np.nan]
|
|
expected = Index(data, dtype=np.float64)
|
|
result = Index(data, dtype="float")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"klass,dtype,na_val",
|
|
[
|
|
(Index, np.float64, np.nan),
|
|
(DatetimeIndex, "datetime64[ns]", pd.NaT),
|
|
],
|
|
)
|
|
def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val):
|
|
# GH 13467
|
|
na_list = [na_val, na_val]
|
|
expected = klass(na_list)
|
|
assert expected.dtype == dtype
|
|
|
|
result = Index(na_list)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
result = Index(np.array(na_list))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals,dtype",
|
|
[
|
|
([1, 2, 3, 4, 5], "int"),
|
|
([1.1, np.nan, 2.2, 3.0], "float"),
|
|
(["A", "B", "C", np.nan], "obj"),
|
|
],
|
|
)
|
|
def test_constructor_simple_new(self, vals, dtype):
|
|
index = Index(vals, name=dtype)
|
|
result = index._simple_new(index.values, dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
@pytest.mark.parametrize("attr", ["values", "asi8"])
|
|
@pytest.mark.parametrize("klass", [Index, DatetimeIndex])
|
|
def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass):
|
|
# Test constructing with a datetimetz dtype
|
|
# .values produces numpy datetimes, so these are considered naive
|
|
# .asi8 produces integers, so these are considered epoch timestamps
|
|
# ^the above will be true in a later version. Right now we `.view`
|
|
# the i8 values as NS_DTYPE, effectively treating them as wall times.
|
|
index = date_range("2011-01-01", periods=5)
|
|
arg = getattr(index, attr)
|
|
index = index.tz_localize(tz_naive_fixture)
|
|
dtype = index.dtype
|
|
|
|
# As of 2.0 astype raises on dt64.astype(dt64tz)
|
|
err = tz_naive_fixture is not None
|
|
msg = "Cannot use .astype to convert from timezone-naive dtype to"
|
|
|
|
if attr == "asi8":
|
|
result = DatetimeIndex(arg).tz_localize(tz_naive_fixture)
|
|
tm.assert_index_equal(result, index)
|
|
elif klass is Index:
|
|
with pytest.raises(TypeError, match="unexpected keyword"):
|
|
klass(arg, tz=tz_naive_fixture)
|
|
else:
|
|
result = klass(arg, tz=tz_naive_fixture)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if attr == "asi8":
|
|
if err:
|
|
with pytest.raises(TypeError, match=msg):
|
|
DatetimeIndex(arg).astype(dtype)
|
|
else:
|
|
result = DatetimeIndex(arg).astype(dtype)
|
|
tm.assert_index_equal(result, index)
|
|
else:
|
|
result = klass(arg, dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if attr == "asi8":
|
|
result = DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture)
|
|
tm.assert_index_equal(result, index)
|
|
elif klass is Index:
|
|
with pytest.raises(TypeError, match="unexpected keyword"):
|
|
klass(arg, tz=tz_naive_fixture)
|
|
else:
|
|
result = klass(list(arg), tz=tz_naive_fixture)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if attr == "asi8":
|
|
if err:
|
|
with pytest.raises(TypeError, match=msg):
|
|
DatetimeIndex(list(arg)).astype(dtype)
|
|
else:
|
|
result = DatetimeIndex(list(arg)).astype(dtype)
|
|
tm.assert_index_equal(result, index)
|
|
else:
|
|
result = klass(list(arg), dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
@pytest.mark.parametrize("attr", ["values", "asi8"])
|
|
@pytest.mark.parametrize("klass", [Index, TimedeltaIndex])
|
|
def test_constructor_dtypes_timedelta(self, attr, klass):
|
|
index = timedelta_range("1 days", periods=5)
|
|
index = index._with_freq(None) # won't be preserved by constructors
|
|
dtype = index.dtype
|
|
|
|
values = getattr(index, attr)
|
|
|
|
result = klass(values, dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
result = klass(list(values), dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
@pytest.mark.parametrize("value", [[], iter([]), (_ for _ in [])])
|
|
@pytest.mark.parametrize(
|
|
"klass",
|
|
[
|
|
Index,
|
|
CategoricalIndex,
|
|
DatetimeIndex,
|
|
TimedeltaIndex,
|
|
],
|
|
)
|
|
def test_constructor_empty(self, value, klass):
|
|
empty = klass(value)
|
|
assert isinstance(empty, klass)
|
|
assert not len(empty)
|
|
|
|
@pytest.mark.parametrize(
|
|
"empty,klass",
|
|
[
|
|
(PeriodIndex([], freq="D"), PeriodIndex),
|
|
(PeriodIndex(iter([]), freq="D"), PeriodIndex),
|
|
(PeriodIndex((_ for _ in []), freq="D"), PeriodIndex),
|
|
(RangeIndex(step=1), RangeIndex),
|
|
(MultiIndex(levels=[[1, 2], ["blue", "red"]], codes=[[], []]), MultiIndex),
|
|
],
|
|
)
|
|
def test_constructor_empty_special(self, empty, klass):
|
|
assert isinstance(empty, klass)
|
|
assert not len(empty)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
"datetime",
|
|
"float64",
|
|
"float32",
|
|
"int64",
|
|
"int32",
|
|
"period",
|
|
"range",
|
|
"repeats",
|
|
"timedelta",
|
|
"tuples",
|
|
"uint64",
|
|
"uint32",
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_view_with_args(self, index):
|
|
index.view("i8")
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
"string",
|
|
pytest.param("categorical", marks=pytest.mark.xfail(reason="gh-25464")),
|
|
"bool-object",
|
|
"bool-dtype",
|
|
"empty",
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_view_with_args_object_array_raises(self, index):
|
|
if index.dtype == bool:
|
|
msg = "When changing to a larger dtype"
|
|
with pytest.raises(ValueError, match=msg):
|
|
index.view("i8")
|
|
elif index.dtype == "string":
|
|
with pytest.raises(NotImplementedError, match="i8"):
|
|
index.view("i8")
|
|
else:
|
|
msg = (
|
|
"Cannot change data-type for array of references|"
|
|
"Cannot change data-type for object array|"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.view("i8")
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
["int64", "int32", "range"],
|
|
indirect=True,
|
|
)
|
|
def test_astype(self, index):
|
|
casted = index.astype("i8")
|
|
|
|
# it works!
|
|
casted.get_loc(5)
|
|
|
|
# pass on name
|
|
index.name = "foobar"
|
|
casted = index.astype("i8")
|
|
assert casted.name == "foobar"
|
|
|
|
def test_equals_object(self):
|
|
# same
|
|
assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"]))
|
|
|
|
@pytest.mark.parametrize(
|
|
"comp", [Index(["a", "b"]), Index(["a", "b", "d"]), ["a", "b", "c"]]
|
|
)
|
|
def test_not_equals_object(self, comp):
|
|
assert not Index(["a", "b", "c"]).equals(comp)
|
|
|
|
def test_identical(self):
|
|
# index
|
|
i1 = Index(["a", "b", "c"])
|
|
i2 = Index(["a", "b", "c"])
|
|
|
|
assert i1.identical(i2)
|
|
|
|
i1 = i1.rename("foo")
|
|
assert i1.equals(i2)
|
|
assert not i1.identical(i2)
|
|
|
|
i2 = i2.rename("foo")
|
|
assert i1.identical(i2)
|
|
|
|
i3 = Index([("a", "a"), ("a", "b"), ("b", "a")])
|
|
i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False)
|
|
assert not i3.identical(i4)
|
|
|
|
def test_is_(self):
|
|
ind = Index(range(10))
|
|
assert ind.is_(ind)
|
|
assert ind.is_(ind.view().view().view().view())
|
|
assert not ind.is_(Index(range(10)))
|
|
assert not ind.is_(ind.copy())
|
|
assert not ind.is_(ind.copy(deep=False))
|
|
assert not ind.is_(ind[:])
|
|
assert not ind.is_(np.array(range(10)))
|
|
|
|
# quasi-implementation dependent
|
|
assert ind.is_(ind.view())
|
|
ind2 = ind.view()
|
|
ind2.name = "bob"
|
|
assert ind.is_(ind2)
|
|
assert ind2.is_(ind)
|
|
# doesn't matter if Indices are *actually* views of underlying data,
|
|
assert not ind.is_(Index(ind.values))
|
|
arr = np.array(range(1, 11))
|
|
ind1 = Index(arr, copy=False)
|
|
ind2 = Index(arr, copy=False)
|
|
assert not ind1.is_(ind2)
|
|
|
|
def test_asof_numeric_vs_bool_raises(self):
|
|
left = Index([1, 2, 3])
|
|
right = Index([True, False], dtype=object)
|
|
|
|
msg = "Cannot compare dtypes int64 and bool"
|
|
with pytest.raises(TypeError, match=msg):
|
|
left.asof(right[0])
|
|
# TODO: should right.asof(left[0]) also raise?
|
|
|
|
with pytest.raises(InvalidIndexError, match=re.escape(str(right))):
|
|
left.asof(right)
|
|
|
|
with pytest.raises(InvalidIndexError, match=re.escape(str(left))):
|
|
right.asof(left)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_booleanindex(self, index):
|
|
bool_index = np.ones(len(index), dtype=bool)
|
|
bool_index[5:30:2] = False
|
|
|
|
sub_index = index[bool_index]
|
|
|
|
for i, val in enumerate(sub_index):
|
|
assert sub_index.get_loc(val) == i
|
|
|
|
sub_index = index[list(bool_index)]
|
|
for i, val in enumerate(sub_index):
|
|
assert sub_index.get_loc(val) == i
|
|
|
|
def test_fancy(self, simple_index):
|
|
index = simple_index
|
|
sl = index[[1, 2, 3]]
|
|
for i in sl:
|
|
assert i == sl[sl.get_loc(i)]
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
["string", "int64", "int32", "uint64", "uint32", "float64", "float32"],
|
|
indirect=True,
|
|
)
|
|
@pytest.mark.parametrize("dtype", [int, np.bool_])
|
|
def test_empty_fancy(self, index, dtype, request, using_infer_string):
|
|
if dtype is np.bool_ and using_infer_string and index.dtype == "string":
|
|
request.applymarker(pytest.mark.xfail(reason="numpy behavior is buggy"))
|
|
empty_arr = np.array([], dtype=dtype)
|
|
empty_index = type(index)([], dtype=index.dtype)
|
|
|
|
assert index[[]].identical(empty_index)
|
|
if dtype == np.bool_:
|
|
with tm.assert_produces_warning(FutureWarning, match="is deprecated"):
|
|
assert index[empty_arr].identical(empty_index)
|
|
else:
|
|
assert index[empty_arr].identical(empty_index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
["string", "int64", "int32", "uint64", "uint32", "float64", "float32"],
|
|
indirect=True,
|
|
)
|
|
def test_empty_fancy_raises(self, index):
|
|
# DatetimeIndex is excluded, because it overrides getitem and should
|
|
# be tested separately.
|
|
empty_farr = np.array([], dtype=np.float64)
|
|
empty_index = type(index)([], dtype=index.dtype)
|
|
|
|
assert index[[]].identical(empty_index)
|
|
# np.ndarray only accepts ndarray of int & bool dtypes, so should Index
|
|
msg = r"arrays used as indices must be of integer"
|
|
with pytest.raises(IndexError, match=msg):
|
|
index[empty_farr]
|
|
|
|
def test_union_dt_as_obj(self, simple_index):
|
|
# TODO: Replace with fixturesult
|
|
index = simple_index
|
|
date_index = date_range("2019-01-01", periods=10)
|
|
first_cat = index.union(date_index)
|
|
second_cat = index.union(index)
|
|
|
|
appended = Index(np.append(index, date_index.astype("O")))
|
|
|
|
tm.assert_index_equal(first_cat, appended)
|
|
tm.assert_index_equal(second_cat, index)
|
|
tm.assert_contains_all(index, first_cat)
|
|
tm.assert_contains_all(index, second_cat)
|
|
tm.assert_contains_all(date_index, first_cat)
|
|
|
|
def test_map_with_tuples(self):
|
|
# GH 12766
|
|
|
|
# Test that returning a single tuple from an Index
|
|
# returns an Index.
|
|
index = Index(np.arange(3), dtype=np.int64)
|
|
result = index.map(lambda x: (x,))
|
|
expected = Index([(i,) for i in index])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# Test that returning a tuple from a map of a single index
|
|
# returns a MultiIndex object.
|
|
result = index.map(lambda x: (x, x == 1))
|
|
expected = MultiIndex.from_tuples([(i, i == 1) for i in index])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_map_with_tuples_mi(self):
|
|
# Test that returning a single object from a MultiIndex
|
|
# returns an Index.
|
|
first_level = ["foo", "bar", "baz"]
|
|
multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3]))
|
|
reduced_index = multi_index.map(lambda x: x[0])
|
|
tm.assert_index_equal(reduced_index, Index(first_level))
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
date_range("2020-01-01", freq="D", periods=10),
|
|
period_range("2020-01-01", freq="D", periods=10),
|
|
timedelta_range("1 day", periods=10),
|
|
],
|
|
)
|
|
def test_map_tseries_indices_return_index(self, index):
|
|
expected = Index([1] * 10)
|
|
result = index.map(lambda x: 1)
|
|
tm.assert_index_equal(expected, result)
|
|
|
|
def test_map_tseries_indices_accsr_return_index(self):
|
|
date_index = DatetimeIndex(
|
|
date_range("2020-01-01", periods=24, freq="h"), name="hourly"
|
|
)
|
|
result = date_index.map(lambda x: x.hour)
|
|
expected = Index(np.arange(24, dtype="int64"), name="hourly")
|
|
tm.assert_index_equal(result, expected, exact=True)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[
|
|
lambda values, index: {i: e for e, i in zip(values, index)},
|
|
lambda values, index: Series(values, index),
|
|
],
|
|
)
|
|
def test_map_dictlike_simple(self, mapper):
|
|
# GH 12756
|
|
expected = Index(["foo", "bar", "baz"])
|
|
index = Index(np.arange(3), dtype=np.int64)
|
|
result = index.map(mapper(expected.values, index))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[
|
|
lambda values, index: {i: e for e, i in zip(values, index)},
|
|
lambda values, index: Series(values, index),
|
|
],
|
|
)
|
|
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
|
def test_map_dictlike(self, index, mapper, request):
|
|
# GH 12756
|
|
if isinstance(index, CategoricalIndex):
|
|
pytest.skip("Tested in test_categorical")
|
|
elif not index.is_unique:
|
|
pytest.skip("Cannot map duplicated index")
|
|
|
|
rng = np.arange(len(index), 0, -1, dtype=np.int64)
|
|
|
|
if index.empty:
|
|
# to match proper result coercion for uints
|
|
expected = Index([])
|
|
elif is_numeric_dtype(index.dtype):
|
|
expected = index._constructor(rng, dtype=index.dtype)
|
|
elif type(index) is Index and index.dtype != object:
|
|
# i.e. EA-backed, for now just Nullable
|
|
expected = Index(rng, dtype=index.dtype)
|
|
else:
|
|
expected = Index(rng)
|
|
|
|
result = index.map(mapper(expected, index))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[Series(["foo", 2.0, "baz"], index=[0, 2, -1]), {0: "foo", 2: 2.0, -1: "baz"}],
|
|
)
|
|
def test_map_with_non_function_missing_values(self, mapper):
|
|
# GH 12756
|
|
expected = Index([2.0, np.nan, "foo"])
|
|
result = Index([2, 1, 0]).map(mapper)
|
|
|
|
tm.assert_index_equal(expected, result)
|
|
|
|
def test_map_na_exclusion(self):
|
|
index = Index([1.5, np.nan, 3, np.nan, 5])
|
|
|
|
result = index.map(lambda x: x * 2, na_action="ignore")
|
|
expected = index * 2
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_map_defaultdict(self):
|
|
index = Index([1, 2, 3])
|
|
default_dict = defaultdict(lambda: "blank")
|
|
default_dict[1] = "stuff"
|
|
result = index.map(default_dict)
|
|
expected = Index(["stuff", "blank", "blank"])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("name,expected", [("foo", "foo"), ("bar", None)])
|
|
def test_append_empty_preserve_name(self, name, expected):
|
|
left = Index([], name="foo")
|
|
right = Index([1, 2, 3], name=name)
|
|
|
|
msg = "The behavior of array concatenation with empty entries is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = left.append(right)
|
|
assert result.name == expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"index, expected",
|
|
[
|
|
("string", False),
|
|
("bool-object", False),
|
|
("bool-dtype", False),
|
|
("categorical", False),
|
|
("int64", True),
|
|
("int32", True),
|
|
("uint64", True),
|
|
("uint32", True),
|
|
("datetime", False),
|
|
("float64", True),
|
|
("float32", True),
|
|
],
|
|
indirect=["index"],
|
|
)
|
|
def test_is_numeric(self, index, expected):
|
|
assert is_any_real_numeric_dtype(index) is expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"index, expected",
|
|
[
|
|
("string", True),
|
|
("bool-object", True),
|
|
("bool-dtype", False),
|
|
("categorical", False),
|
|
("int64", False),
|
|
("int32", False),
|
|
("uint64", False),
|
|
("uint32", False),
|
|
("datetime", False),
|
|
("float64", False),
|
|
("float32", False),
|
|
],
|
|
indirect=["index"],
|
|
)
|
|
def test_is_object(self, index, expected, using_infer_string):
|
|
if using_infer_string and index.dtype == "string" and expected:
|
|
expected = False
|
|
assert is_object_dtype(index) is expected
|
|
|
|
def test_summary(self, index):
|
|
index._summary()
|
|
|
|
def test_format_bug(self):
|
|
# GH 14626
|
|
# windows has different precision on datetime.datetime.now (it doesn't
|
|
# include us since the default for Timestamp shows these but Index
|
|
# formatting does not we are skipping)
|
|
now = datetime.now()
|
|
msg = r"Index\.format is deprecated"
|
|
|
|
if not str(now).endswith("000"):
|
|
index = Index([now])
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = index.format()
|
|
expected = [str(index[0])]
|
|
assert formatted == expected
|
|
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
Index([]).format()
|
|
|
|
@pytest.mark.parametrize("vals", [[1, 2.0 + 3.0j, 4.0], ["a", "b", "c"]])
|
|
def test_format_missing(self, vals, nulls_fixture):
|
|
# 2845
|
|
vals = list(vals) # Copy for each iteration
|
|
vals.append(nulls_fixture)
|
|
index = Index(vals, dtype=object)
|
|
# TODO: case with complex dtype?
|
|
|
|
msg = r"Index\.format is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
formatted = index.format()
|
|
null_repr = "NaN" if isinstance(nulls_fixture, float) else str(nulls_fixture)
|
|
expected = [str(index[0]), str(index[1]), str(index[2]), null_repr]
|
|
|
|
assert formatted == expected
|
|
assert index[3] is nulls_fixture
|
|
|
|
@pytest.mark.parametrize("op", ["any", "all"])
|
|
def test_logical_compat(self, op, simple_index):
|
|
index = simple_index
|
|
left = getattr(index, op)()
|
|
assert left == getattr(index.values, op)()
|
|
right = getattr(index.to_series(), op)()
|
|
# left might not match right exactly in e.g. string cases where the
|
|
# because we use np.any/all instead of .any/all
|
|
assert bool(left) == bool(right)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", ["string", "int64", "int32", "float64", "float32"], indirect=True
|
|
)
|
|
def test_drop_by_str_label(self, index):
|
|
n = len(index)
|
|
drop = index[list(range(5, 10))]
|
|
dropped = index.drop(drop)
|
|
|
|
expected = index[list(range(5)) + list(range(10, n))]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
dropped = index.drop(index[0])
|
|
expected = index[1:]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", ["string", "int64", "int32", "float64", "float32"], indirect=True
|
|
)
|
|
@pytest.mark.parametrize("keys", [["foo", "bar"], ["1", "bar"]])
|
|
def test_drop_by_str_label_raises_missing_keys(self, index, keys):
|
|
with pytest.raises(KeyError, match=""):
|
|
index.drop(keys)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", ["string", "int64", "int32", "float64", "float32"], indirect=True
|
|
)
|
|
def test_drop_by_str_label_errors_ignore(self, index):
|
|
n = len(index)
|
|
drop = index[list(range(5, 10))]
|
|
mixed = drop.tolist() + ["foo"]
|
|
dropped = index.drop(mixed, errors="ignore")
|
|
|
|
expected = index[list(range(5)) + list(range(10, n))]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
dropped = index.drop(["foo", "bar"], errors="ignore")
|
|
expected = index[list(range(n))]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
def test_drop_by_numeric_label_loc(self):
|
|
# TODO: Parametrize numeric and str tests after self.strIndex fixture
|
|
index = Index([1, 2, 3])
|
|
dropped = index.drop(1)
|
|
expected = Index([2, 3])
|
|
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
def test_drop_by_numeric_label_raises_missing_keys(self):
|
|
index = Index([1, 2, 3])
|
|
with pytest.raises(KeyError, match=""):
|
|
index.drop([3, 4])
|
|
|
|
@pytest.mark.parametrize(
|
|
"key,expected", [(4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))]
|
|
)
|
|
def test_drop_by_numeric_label_errors_ignore(self, key, expected):
|
|
index = Index([1, 2, 3])
|
|
dropped = index.drop(key, errors="ignore")
|
|
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[["a", "b", ("c", "d")], ["a", ("c", "d"), "b"], [("c", "d"), "a", "b"]],
|
|
)
|
|
@pytest.mark.parametrize("to_drop", [[("c", "d"), "a"], ["a", ("c", "d")]])
|
|
def test_drop_tuple(self, values, to_drop):
|
|
# GH 18304
|
|
index = Index(values)
|
|
expected = Index(["b"], dtype=object)
|
|
|
|
result = index.drop(to_drop)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
removed = index.drop(to_drop[0])
|
|
for drop_me in to_drop[1], [to_drop[1]]:
|
|
result = removed.drop(drop_me)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
removed = index.drop(to_drop[1])
|
|
msg = rf"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\""
|
|
for drop_me in to_drop[1], [to_drop[1]]:
|
|
with pytest.raises(KeyError, match=msg):
|
|
removed.drop(drop_me)
|
|
|
|
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
|
def test_drop_with_duplicates_in_index(self, index):
|
|
# GH38051
|
|
if len(index) == 0 or isinstance(index, MultiIndex):
|
|
pytest.skip("Test doesn't make sense for empty MultiIndex")
|
|
if isinstance(index, IntervalIndex) and not IS64:
|
|
pytest.skip("Cannot test IntervalIndex with int64 dtype on 32 bit platform")
|
|
index = index.unique().repeat(2)
|
|
expected = index[2:]
|
|
result = index.drop(index[0])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"attr",
|
|
[
|
|
"is_monotonic_increasing",
|
|
"is_monotonic_decreasing",
|
|
"_is_strictly_monotonic_increasing",
|
|
"_is_strictly_monotonic_decreasing",
|
|
],
|
|
)
|
|
def test_is_monotonic_incomparable(self, attr):
|
|
index = Index([5, datetime.now(), 7])
|
|
assert not getattr(index, attr)
|
|
|
|
@pytest.mark.parametrize("values", [["foo", "bar", "quux"], {"foo", "bar", "quux"}])
|
|
@pytest.mark.parametrize(
|
|
"index,expected",
|
|
[
|
|
(Index(["qux", "baz", "foo", "bar"]), np.array([False, False, True, True])),
|
|
(Index([]), np.array([], dtype=bool)), # empty
|
|
],
|
|
)
|
|
def test_isin(self, values, index, expected):
|
|
result = index.isin(values)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_isin_nan_common_object(
|
|
self, nulls_fixture, nulls_fixture2, using_infer_string
|
|
):
|
|
# Test cartesian product of null fixtures and ensure that we don't
|
|
# mangle the various types (save a corner case with PyPy)
|
|
idx = Index(["a", nulls_fixture])
|
|
|
|
# all nans are the same
|
|
if (
|
|
isinstance(nulls_fixture, float)
|
|
and isinstance(nulls_fixture2, float)
|
|
and math.isnan(nulls_fixture)
|
|
and math.isnan(nulls_fixture2)
|
|
):
|
|
tm.assert_numpy_array_equal(
|
|
idx.isin([nulls_fixture2]),
|
|
np.array([False, True]),
|
|
)
|
|
|
|
elif nulls_fixture is nulls_fixture2: # should preserve NA type
|
|
tm.assert_numpy_array_equal(
|
|
idx.isin([nulls_fixture2]),
|
|
np.array([False, True]),
|
|
)
|
|
|
|
elif using_infer_string and idx.dtype == "string":
|
|
tm.assert_numpy_array_equal(
|
|
idx.isin([nulls_fixture2]),
|
|
np.array([False, True]),
|
|
)
|
|
|
|
else:
|
|
tm.assert_numpy_array_equal(
|
|
idx.isin([nulls_fixture2]),
|
|
np.array([False, False]),
|
|
)
|
|
|
|
def test_isin_nan_common_float64(self, nulls_fixture, float_numpy_dtype):
|
|
dtype = float_numpy_dtype
|
|
|
|
if nulls_fixture is pd.NaT or nulls_fixture is pd.NA:
|
|
# Check 1) that we cannot construct a float64 Index with this value
|
|
# and 2) that with an NaN we do not have .isin(nulls_fixture)
|
|
msg = (
|
|
r"float\(\) argument must be a string or a (real )?number, "
|
|
f"not {repr(type(nulls_fixture).__name__)}"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
Index([1.0, nulls_fixture], dtype=dtype)
|
|
|
|
idx = Index([1.0, np.nan], dtype=dtype)
|
|
assert not idx.isin([nulls_fixture]).any()
|
|
return
|
|
|
|
idx = Index([1.0, nulls_fixture], dtype=dtype)
|
|
res = idx.isin([np.nan])
|
|
tm.assert_numpy_array_equal(res, np.array([False, True]))
|
|
|
|
# we cannot compare NaT with NaN
|
|
res = idx.isin([pd.NaT])
|
|
tm.assert_numpy_array_equal(res, np.array([False, False]))
|
|
|
|
@pytest.mark.parametrize("level", [0, -1])
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(["qux", "baz", "foo", "bar"]),
|
|
Index([1.0, 2.0, 3.0, 4.0], dtype=np.float64),
|
|
],
|
|
)
|
|
def test_isin_level_kwarg(self, level, index):
|
|
values = index.tolist()[-2:] + ["nonexisting"]
|
|
|
|
expected = np.array([False, False, True, True])
|
|
tm.assert_numpy_array_equal(expected, index.isin(values, level=level))
|
|
|
|
index.name = "foobar"
|
|
tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar"))
|
|
|
|
def test_isin_level_kwarg_bad_level_raises(self, index):
|
|
for level in [10, index.nlevels, -(index.nlevels + 1)]:
|
|
with pytest.raises(IndexError, match="Too many levels"):
|
|
index.isin([], level=level)
|
|
|
|
@pytest.mark.parametrize("label", [1.0, "foobar", "xyzzy", np.nan])
|
|
def test_isin_level_kwarg_bad_label_raises(self, label, index):
|
|
if isinstance(index, MultiIndex):
|
|
index = index.rename(["foo", "bar"] + index.names[2:])
|
|
msg = f"'Level {label} not found'"
|
|
else:
|
|
index = index.rename("foo")
|
|
msg = rf"Requested level \({label}\) does not match index name \(foo\)"
|
|
with pytest.raises(KeyError, match=msg):
|
|
index.isin([], level=label)
|
|
|
|
@pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
|
|
def test_isin_empty(self, empty):
|
|
# see gh-16991
|
|
index = Index(["a", "b"])
|
|
expected = np.array([False, False])
|
|
|
|
result = index.isin(empty)
|
|
tm.assert_numpy_array_equal(expected, result)
|
|
|
|
@td.skip_if_no("pyarrow")
|
|
def test_isin_arrow_string_null(self):
|
|
# GH#55821
|
|
index = Index(["a", "b"], dtype="string[pyarrow_numpy]")
|
|
result = index.isin([None])
|
|
expected = np.array([False, False])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[
|
|
[1, 2, 3, 4],
|
|
[1.0, 2.0, 3.0, 4.0],
|
|
[True, True, True, True],
|
|
["foo", "bar", "baz", "qux"],
|
|
date_range("2018-01-01", freq="D", periods=4),
|
|
],
|
|
)
|
|
def test_boolean_cmp(self, values):
|
|
index = Index(values)
|
|
result = index == values
|
|
expected = np.array([True, True, True, True], dtype=bool)
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
@pytest.mark.parametrize("name,level", [(None, 0), ("a", "a")])
|
|
def test_get_level_values(self, index, name, level):
|
|
expected = index.copy()
|
|
if name:
|
|
expected.name = name
|
|
|
|
result = expected.get_level_values(level)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_slice_keep_name(self):
|
|
index = Index(["a", "b"], name="asdf")
|
|
assert index.name == index[1:].name
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
"string",
|
|
"datetime",
|
|
"int64",
|
|
"int32",
|
|
"uint64",
|
|
"uint32",
|
|
"float64",
|
|
"float32",
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_join_self(self, index, join_type):
|
|
result = index.join(index, how=join_type)
|
|
expected = index
|
|
if join_type == "outer":
|
|
expected = expected.sort_values()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("method", ["strip", "rstrip", "lstrip"])
|
|
def test_str_attribute(self, method):
|
|
# GH9068
|
|
index = Index([" jack", "jill ", " jesse ", "frank"])
|
|
expected = Index([getattr(str, method)(x) for x in index.values])
|
|
|
|
result = getattr(index.str, method)()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(range(5)),
|
|
date_range("2020-01-01", periods=10),
|
|
MultiIndex.from_tuples([("foo", "1"), ("bar", "3")]),
|
|
period_range(start="2000", end="2010", freq="Y"),
|
|
],
|
|
)
|
|
def test_str_attribute_raises(self, index):
|
|
with pytest.raises(AttributeError, match="only use .str accessor"):
|
|
index.str.repeat(2)
|
|
|
|
@pytest.mark.parametrize(
|
|
"expand,expected",
|
|
[
|
|
(None, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
|
|
(False, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
|
|
(
|
|
True,
|
|
MultiIndex.from_tuples(
|
|
[("a", "b", "c"), ("d", "e", np.nan), ("f", np.nan, np.nan)]
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_str_split(self, expand, expected):
|
|
index = Index(["a b c", "d e", "f"])
|
|
if expand is not None:
|
|
result = index.str.split(expand=expand)
|
|
else:
|
|
result = index.str.split()
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_str_bool_return(self):
|
|
# test boolean case, should return np.array instead of boolean Index
|
|
index = Index(["a1", "a2", "b1", "b2"])
|
|
result = index.str.startswith("a")
|
|
expected = np.array([True, True, False, False])
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
assert isinstance(result, np.ndarray)
|
|
|
|
def test_str_bool_series_indexing(self):
|
|
index = Index(["a1", "a2", "b1", "b2"])
|
|
s = Series(range(4), index=index)
|
|
|
|
result = s[s.index.str.startswith("a")]
|
|
expected = Series(range(2), index=["a1", "a2"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index,expected", [(Index(list("abcd")), True), (Index(range(4)), False)]
|
|
)
|
|
def test_tab_completion(self, index, expected):
|
|
# GH 9910
|
|
result = "str" in dir(index)
|
|
assert result == expected
|
|
|
|
def test_indexing_doesnt_change_class(self):
|
|
index = Index([1, 2, 3, "a", "b", "c"])
|
|
|
|
assert index[1:3].identical(Index([2, 3], dtype=np.object_))
|
|
assert index[[0, 1]].identical(Index([1, 2], dtype=np.object_))
|
|
|
|
def test_outer_join_sort(self):
|
|
left_index = Index(np.random.default_rng(2).permutation(15))
|
|
right_index = date_range("2020-01-01", periods=10)
|
|
|
|
with tm.assert_produces_warning(RuntimeWarning):
|
|
result = left_index.join(right_index, how="outer")
|
|
|
|
with tm.assert_produces_warning(RuntimeWarning):
|
|
expected = left_index.astype(object).union(right_index.astype(object))
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_take_fill_value(self):
|
|
# GH 12631
|
|
index = Index(list("ABC"), name="xxx")
|
|
result = index.take(np.array([1, 0, -1]))
|
|
expected = Index(list("BAC"), name="xxx")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# fill_value
|
|
result = index.take(np.array([1, 0, -1]), fill_value=True)
|
|
expected = Index(["B", "A", np.nan], name="xxx")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# allow_fill=False
|
|
result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
|
|
expected = Index(["B", "A", "C"], name="xxx")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_take_fill_value_none_raises(self):
|
|
index = Index(list("ABC"), name="xxx")
|
|
msg = (
|
|
"When allow_fill=True and fill_value is not None, "
|
|
"all indices must be >= -1"
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
index.take(np.array([1, 0, -2]), fill_value=True)
|
|
with pytest.raises(ValueError, match=msg):
|
|
index.take(np.array([1, 0, -5]), fill_value=True)
|
|
|
|
def test_take_bad_bounds_raises(self):
|
|
index = Index(list("ABC"), name="xxx")
|
|
with pytest.raises(IndexError, match="out of bounds"):
|
|
index.take(np.array([1, -5]))
|
|
|
|
@pytest.mark.parametrize("name", [None, "foobar"])
|
|
@pytest.mark.parametrize(
|
|
"labels",
|
|
[
|
|
[],
|
|
np.array([]),
|
|
["A", "B", "C"],
|
|
["C", "B", "A"],
|
|
np.array(["A", "B", "C"]),
|
|
np.array(["C", "B", "A"]),
|
|
# Must preserve name even if dtype changes
|
|
date_range("20130101", periods=3).values,
|
|
date_range("20130101", periods=3).tolist(),
|
|
],
|
|
)
|
|
def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels):
|
|
# GH6552
|
|
index = Index([0, 1, 2])
|
|
index.name = name
|
|
assert index.reindex(labels)[0].name == name
|
|
|
|
@pytest.mark.parametrize("labels", [[], np.array([]), np.array([], dtype=np.int64)])
|
|
def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels):
|
|
# GH7774
|
|
index = Index(list("abc"))
|
|
assert index.reindex(labels)[0].dtype.type == index.dtype.type
|
|
|
|
@pytest.mark.parametrize(
|
|
"labels,dtype",
|
|
[
|
|
(DatetimeIndex([]), np.datetime64),
|
|
],
|
|
)
|
|
def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype):
|
|
# GH7774
|
|
index = Index(list("abc"))
|
|
assert index.reindex(labels)[0].dtype.type == dtype
|
|
|
|
def test_reindex_doesnt_preserve_type_if_target_is_empty_index_numeric(
|
|
self, any_real_numpy_dtype
|
|
):
|
|
# GH7774
|
|
dtype = any_real_numpy_dtype
|
|
index = Index(list("abc"))
|
|
labels = Index([], dtype=dtype)
|
|
assert index.reindex(labels)[0].dtype == dtype
|
|
|
|
def test_reindex_no_type_preserve_target_empty_mi(self):
|
|
index = Index(list("abc"))
|
|
result = index.reindex(
|
|
MultiIndex([Index([], np.int64), Index([], np.float64)], [[], []])
|
|
)[0]
|
|
assert result.levels[0].dtype.type == np.int64
|
|
assert result.levels[1].dtype.type == np.float64
|
|
|
|
def test_reindex_ignoring_level(self):
|
|
# GH#35132
|
|
idx = Index([1, 2, 3], name="x")
|
|
idx2 = Index([1, 2, 3, 4], name="x")
|
|
expected = Index([1, 2, 3, 4], name="x")
|
|
result, _ = idx.reindex(idx2, level="x")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_groupby(self):
|
|
index = Index(range(5))
|
|
result = index.groupby(np.array([1, 1, 2, 2, 2]))
|
|
expected = {1: Index([0, 1]), 2: Index([2, 3, 4])}
|
|
|
|
tm.assert_dict_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mi,expected",
|
|
[
|
|
(MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])),
|
|
(MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False])),
|
|
],
|
|
)
|
|
def test_equals_op_multiindex(self, mi, expected):
|
|
# GH9785
|
|
# test comparisons of multiindex
|
|
df = DataFrame(
|
|
[3, 6],
|
|
columns=["c"],
|
|
index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
|
|
)
|
|
|
|
result = df.index == mi
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_equals_op_multiindex_identify(self):
|
|
df = DataFrame(
|
|
[3, 6],
|
|
columns=["c"],
|
|
index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
|
|
)
|
|
|
|
result = df.index == df.index
|
|
expected = np.array([True, True])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]),
|
|
Index(["foo", "bar", "baz"]),
|
|
],
|
|
)
|
|
def test_equals_op_mismatched_multiindex_raises(self, index):
|
|
df = DataFrame(
|
|
[3, 6],
|
|
columns=["c"],
|
|
index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
|
|
)
|
|
|
|
with pytest.raises(ValueError, match="Lengths must match"):
|
|
df.index == index
|
|
|
|
def test_equals_op_index_vs_mi_same_length(self, using_infer_string):
|
|
mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)])
|
|
index = Index(["foo", "bar", "baz"])
|
|
|
|
result = mi == index
|
|
expected = np.array([False, False, False])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"dt_conv, arg",
|
|
[
|
|
(pd.to_datetime, ["2000-01-01", "2000-01-02"]),
|
|
(pd.to_timedelta, ["01:02:03", "01:02:04"]),
|
|
],
|
|
)
|
|
def test_dt_conversion_preserves_name(self, dt_conv, arg):
|
|
# GH 10875
|
|
index = Index(arg, name="label")
|
|
assert index.name == dt_conv(index).name
|
|
|
|
def test_cached_properties_not_settable(self):
|
|
index = Index([1, 2, 3])
|
|
with pytest.raises(AttributeError, match="Can't set attribute"):
|
|
index.is_unique = False
|
|
|
|
def test_tab_complete_warning(self, ip):
|
|
# https://github.com/pandas-dev/pandas/issues/16409
|
|
pytest.importorskip("IPython", minversion="6.0.0")
|
|
from IPython.core.completer import provisionalcompleter
|
|
|
|
code = "import pandas as pd; idx = pd.Index([1, 2])"
|
|
ip.run_cell(code)
|
|
|
|
# GH 31324 newer jedi version raises Deprecation warning;
|
|
# appears resolved 2021-02-02
|
|
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
|
|
with provisionalcompleter("ignore"):
|
|
list(ip.Completer.completions("idx.", 4))
|
|
|
|
def test_contains_method_removed(self, index):
|
|
# GH#30103 method removed for all types except IntervalIndex
|
|
if isinstance(index, IntervalIndex):
|
|
index.contains(1)
|
|
else:
|
|
msg = f"'{type(index).__name__}' object has no attribute 'contains'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
index.contains(1)
|
|
|
|
def test_sortlevel(self):
|
|
index = Index([5, 4, 3, 2, 1])
|
|
with pytest.raises(Exception, match="ascending must be a single bool value or"):
|
|
index.sortlevel(ascending="True")
|
|
|
|
with pytest.raises(
|
|
Exception, match="ascending must be a list of bool values of length 1"
|
|
):
|
|
index.sortlevel(ascending=[True, True])
|
|
|
|
with pytest.raises(Exception, match="ascending must be a bool value"):
|
|
index.sortlevel(ascending=["True"])
|
|
|
|
expected = Index([1, 2, 3, 4, 5])
|
|
result = index.sortlevel(ascending=[True])
|
|
tm.assert_index_equal(result[0], expected)
|
|
|
|
expected = Index([1, 2, 3, 4, 5])
|
|
result = index.sortlevel(ascending=True)
|
|
tm.assert_index_equal(result[0], expected)
|
|
|
|
expected = Index([5, 4, 3, 2, 1])
|
|
result = index.sortlevel(ascending=False)
|
|
tm.assert_index_equal(result[0], expected)
|
|
|
|
def test_sortlevel_na_position(self):
|
|
# GH#51612
|
|
idx = Index([1, np.nan])
|
|
result = idx.sortlevel(na_position="first")[0]
|
|
expected = Index([np.nan, 1])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"periods, expected_results",
|
|
[
|
|
(1, [np.nan, 10, 10, 10, 10]),
|
|
(2, [np.nan, np.nan, 20, 20, 20]),
|
|
(3, [np.nan, np.nan, np.nan, 30, 30]),
|
|
],
|
|
)
|
|
def test_index_diff(self, periods, expected_results):
|
|
# GH#19708
|
|
idx = Index([10, 20, 30, 40, 50])
|
|
result = idx.diff(periods)
|
|
expected = Index(expected_results)
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"decimals, expected_results",
|
|
[
|
|
(0, [1.0, 2.0, 3.0]),
|
|
(1, [1.2, 2.3, 3.5]),
|
|
(2, [1.23, 2.35, 3.46]),
|
|
],
|
|
)
|
|
def test_index_round(self, decimals, expected_results):
|
|
# GH#19708
|
|
idx = Index([1.234, 2.345, 3.456])
|
|
result = idx.round(decimals)
|
|
expected = Index(expected_results)
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
class TestMixedIntIndex:
|
|
# Mostly the tests from common.py for which the results differ
|
|
# in py2 and py3 because ints and strings are uncomparable in py3
|
|
# (GH 13514)
|
|
@pytest.fixture
|
|
def simple_index(self) -> Index:
|
|
return Index([0, "a", 1, "b", 2, "c"])
|
|
|
|
def test_argsort(self, simple_index):
|
|
index = simple_index
|
|
with pytest.raises(TypeError, match="'>|<' not supported"):
|
|
index.argsort()
|
|
|
|
def test_numpy_argsort(self, simple_index):
|
|
index = simple_index
|
|
with pytest.raises(TypeError, match="'>|<' not supported"):
|
|
np.argsort(index)
|
|
|
|
def test_copy_name(self, simple_index):
|
|
# Check that "name" argument passed at initialization is honoured
|
|
# GH12309
|
|
index = simple_index
|
|
|
|
first = type(index)(index, copy=True, name="mario")
|
|
second = type(first)(first, copy=False)
|
|
|
|
# Even though "copy=False", we want a new object.
|
|
assert first is not second
|
|
tm.assert_index_equal(first, second)
|
|
|
|
assert first.name == "mario"
|
|
assert second.name == "mario"
|
|
|
|
s1 = Series(2, index=first)
|
|
s2 = Series(3, index=second[:-1])
|
|
|
|
s3 = s1 * s2
|
|
|
|
assert s3.index.name == "mario"
|
|
|
|
def test_copy_name2(self):
|
|
# Check that adding a "name" parameter to the copy is honored
|
|
# GH14302
|
|
index = Index([1, 2], name="MyName")
|
|
index1 = index.copy()
|
|
|
|
tm.assert_index_equal(index, index1)
|
|
|
|
index2 = index.copy(name="NewName")
|
|
tm.assert_index_equal(index, index2, check_names=False)
|
|
assert index.name == "MyName"
|
|
assert index2.name == "NewName"
|
|
|
|
def test_unique_na(self):
|
|
idx = Index([2, np.nan, 2, 1], name="my_index")
|
|
expected = Index([2, np.nan, 1], name="my_index")
|
|
result = idx.unique()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_logical_compat(self, simple_index):
|
|
index = simple_index
|
|
assert index.all() == index.values.all()
|
|
assert index.any() == index.values.any()
|
|
|
|
@pytest.mark.parametrize("how", ["any", "all"])
|
|
@pytest.mark.parametrize("dtype", [None, object, "category"])
|
|
@pytest.mark.parametrize(
|
|
"vals,expected",
|
|
[
|
|
([1, 2, 3], [1, 2, 3]),
|
|
([1.0, 2.0, 3.0], [1.0, 2.0, 3.0]),
|
|
([1.0, 2.0, np.nan, 3.0], [1.0, 2.0, 3.0]),
|
|
(["A", "B", "C"], ["A", "B", "C"]),
|
|
(["A", np.nan, "B", "C"], ["A", "B", "C"]),
|
|
],
|
|
)
|
|
def test_dropna(self, how, dtype, vals, expected):
|
|
# GH 6194
|
|
index = Index(vals, dtype=dtype)
|
|
result = index.dropna(how=how)
|
|
expected = Index(expected, dtype=dtype)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("how", ["any", "all"])
|
|
@pytest.mark.parametrize(
|
|
"index,expected",
|
|
[
|
|
(
|
|
DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
|
|
DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
|
|
),
|
|
(
|
|
DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", pd.NaT]),
|
|
DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
|
|
),
|
|
(
|
|
TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
|
TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
|
),
|
|
(
|
|
TimedeltaIndex([pd.NaT, "1 days", "2 days", "3 days", pd.NaT]),
|
|
TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
|
),
|
|
(
|
|
PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
|
|
PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
|
|
),
|
|
(
|
|
PeriodIndex(["2012-02", "2012-04", "NaT", "2012-05"], freq="M"),
|
|
PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
|
|
),
|
|
],
|
|
)
|
|
def test_dropna_dt_like(self, how, index, expected):
|
|
result = index.dropna(how=how)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_dropna_invalid_how_raises(self):
|
|
msg = "invalid how option: xxx"
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index([1, 2, 3]).dropna(how="xxx")
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index([np.nan]),
|
|
Index([np.nan, 1]),
|
|
Index([1, 2, np.nan]),
|
|
Index(["a", "b", np.nan]),
|
|
pd.to_datetime(["NaT"]),
|
|
pd.to_datetime(["NaT", "2000-01-01"]),
|
|
pd.to_datetime(["2000-01-01", "NaT", "2000-01-02"]),
|
|
pd.to_timedelta(["1 day", "NaT"]),
|
|
],
|
|
)
|
|
def test_is_monotonic_na(self, index):
|
|
assert index.is_monotonic_increasing is False
|
|
assert index.is_monotonic_decreasing is False
|
|
assert index._is_strictly_monotonic_increasing is False
|
|
assert index._is_strictly_monotonic_decreasing is False
|
|
|
|
@pytest.mark.parametrize("dtype", ["f8", "m8[ns]", "M8[us]"])
|
|
@pytest.mark.parametrize("unique_first", [True, False])
|
|
def test_is_monotonic_unique_na(self, dtype, unique_first):
|
|
# GH 55755
|
|
index = Index([None, 1, 1], dtype=dtype)
|
|
if unique_first:
|
|
assert index.is_unique is False
|
|
assert index.is_monotonic_increasing is False
|
|
assert index.is_monotonic_decreasing is False
|
|
else:
|
|
assert index.is_monotonic_increasing is False
|
|
assert index.is_monotonic_decreasing is False
|
|
assert index.is_unique is False
|
|
|
|
def test_int_name_format(self, frame_or_series):
|
|
index = Index(["a", "b", "c"], name=0)
|
|
result = frame_or_series(list(range(3)), index=index)
|
|
assert "0" in repr(result)
|
|
|
|
def test_str_to_bytes_raises(self):
|
|
# GH 26447
|
|
index = Index([str(x) for x in range(10)])
|
|
msg = "^'str' object cannot be interpreted as an integer$"
|
|
with pytest.raises(TypeError, match=msg):
|
|
bytes(index)
|
|
|
|
@pytest.mark.filterwarnings("ignore:elementwise comparison failed:FutureWarning")
|
|
def test_index_with_tuple_bool(self):
|
|
# GH34123
|
|
# TODO: also this op right now produces FutureWarning from numpy
|
|
# https://github.com/numpy/numpy/issues/11521
|
|
idx = Index([("a", "b"), ("b", "c"), ("c", "a")])
|
|
result = idx == ("c", "a")
|
|
expected = np.array([False, False, True])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
class TestIndexUtils:
|
|
@pytest.mark.parametrize(
|
|
"data, names, expected",
|
|
[
|
|
([[1, 2, 3]], None, Index([1, 2, 3])),
|
|
([[1, 2, 3]], ["name"], Index([1, 2, 3], name="name")),
|
|
(
|
|
[["a", "a"], ["c", "d"]],
|
|
None,
|
|
MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]]),
|
|
),
|
|
(
|
|
[["a", "a"], ["c", "d"]],
|
|
["L1", "L2"],
|
|
MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]], names=["L1", "L2"]),
|
|
),
|
|
],
|
|
)
|
|
def test_ensure_index_from_sequences(self, data, names, expected):
|
|
result = ensure_index_from_sequences(data, names)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_ensure_index_mixed_closed_intervals(self):
|
|
# GH27172
|
|
intervals = [
|
|
pd.Interval(0, 1, closed="left"),
|
|
pd.Interval(1, 2, closed="right"),
|
|
pd.Interval(2, 3, closed="neither"),
|
|
pd.Interval(3, 4, closed="both"),
|
|
]
|
|
result = ensure_index(intervals)
|
|
expected = Index(intervals, dtype=object)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_ensure_index_uint64(self):
|
|
# with both 0 and a large-uint64, np.array will infer to float64
|
|
# https://github.com/numpy/numpy/issues/19146
|
|
# but a more accurate choice would be uint64
|
|
values = [0, np.iinfo(np.uint64).max]
|
|
|
|
result = ensure_index(values)
|
|
assert list(result) == values
|
|
|
|
expected = Index(values, dtype="uint64")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_get_combined_index(self):
|
|
result = _get_combined_index([])
|
|
expected = Index([])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"opname",
|
|
[
|
|
"eq",
|
|
"ne",
|
|
"le",
|
|
"lt",
|
|
"ge",
|
|
"gt",
|
|
"add",
|
|
"radd",
|
|
"sub",
|
|
"rsub",
|
|
"mul",
|
|
"rmul",
|
|
"truediv",
|
|
"rtruediv",
|
|
"floordiv",
|
|
"rfloordiv",
|
|
"pow",
|
|
"rpow",
|
|
"mod",
|
|
"divmod",
|
|
],
|
|
)
|
|
def test_generated_op_names(opname, index):
|
|
opname = f"__{opname}__"
|
|
method = getattr(index, opname)
|
|
assert method.__name__ == opname
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"klass",
|
|
[
|
|
partial(CategoricalIndex, data=[1]),
|
|
partial(DatetimeIndex, data=["2020-01-01"]),
|
|
partial(PeriodIndex, data=["2020-01-01"]),
|
|
partial(TimedeltaIndex, data=["1 day"]),
|
|
partial(RangeIndex, data=range(1)),
|
|
partial(IntervalIndex, data=[pd.Interval(0, 1)]),
|
|
partial(Index, data=["a"], dtype=object),
|
|
partial(MultiIndex, levels=[1], codes=[0]),
|
|
],
|
|
)
|
|
def test_index_subclass_constructor_wrong_kwargs(klass):
|
|
# GH #19348
|
|
with pytest.raises(TypeError, match="unexpected keyword argument"):
|
|
klass(foo="bar")
|
|
|
|
|
|
def test_deprecated_fastpath():
|
|
msg = "[Uu]nexpected keyword argument"
|
|
with pytest.raises(TypeError, match=msg):
|
|
Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
RangeIndex(0, 5, 2, name="test", fastpath=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
CategoricalIndex(["a", "b", "c"], name="test", fastpath=True)
|
|
|
|
|
|
def test_shape_of_invalid_index():
|
|
# Pre-2.0, it was possible to create "invalid" index objects backed by
|
|
# a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125
|
|
# about this). However, as long as this is not solved in general,this test ensures
|
|
# that the returned shape is consistent with this underlying array for
|
|
# compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775)
|
|
idx = Index([0, 1, 2, 3])
|
|
with pytest.raises(ValueError, match="Multi-dimensional indexing"):
|
|
# GH#30588 multi-dimensional indexing deprecated
|
|
idx[:, None]
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [None, np.int64, np.uint64, np.float64])
|
|
def test_validate_1d_input(dtype):
|
|
# GH#27125 check that we do not have >1-dimensional input
|
|
msg = "Index data must be 1-dimensional"
|
|
|
|
arr = np.arange(8).reshape(2, 2, 2)
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index(arr, dtype=dtype)
|
|
|
|
df = DataFrame(arr.reshape(4, 2))
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index(df, dtype=dtype)
|
|
|
|
# GH#13601 trying to assign a multi-dimensional array to an index is not allowed
|
|
ser = Series(0, range(4))
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.index = np.array([[2, 3]] * 4, dtype=dtype)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"klass, extra_kwargs",
|
|
[
|
|
[Index, {}],
|
|
*[[lambda x: Index(x, dtype=dtyp), {}] for dtyp in tm.ALL_REAL_NUMPY_DTYPES],
|
|
[DatetimeIndex, {}],
|
|
[TimedeltaIndex, {}],
|
|
[PeriodIndex, {"freq": "Y"}],
|
|
],
|
|
)
|
|
def test_construct_from_memoryview(klass, extra_kwargs):
|
|
# GH 13120
|
|
result = klass(memoryview(np.arange(2000, 2005)), **extra_kwargs)
|
|
expected = klass(list(range(2000, 2005)), **extra_kwargs)
|
|
tm.assert_index_equal(result, expected, exact=True)
|
|
|
|
|
|
@pytest.mark.parametrize("op", [operator.lt, operator.gt])
|
|
def test_nan_comparison_same_object(op):
|
|
# GH#47105
|
|
idx = Index([np.nan])
|
|
expected = np.array([False])
|
|
|
|
result = op(idx, idx)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
result = op(idx, idx.copy())
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("pyarrow")
|
|
def test_is_monotonic_pyarrow_list_type():
|
|
# GH 57333
|
|
import pyarrow as pa
|
|
|
|
idx = Index([[1], [2, 3]], dtype=pd.ArrowDtype(pa.list_(pa.int64())))
|
|
assert not idx.is_monotonic_increasing
|
|
assert not idx.is_monotonic_decreasing
|