Traktor/myenv/Lib/site-packages/pandas/tests/indexing/test_iloc.py
2024-05-23 01:57:24 +02:00

1479 lines
50 KiB
Python

""" test positional based indexing with iloc """
from datetime import datetime
import re
import numpy as np
import pytest
from pandas.errors import IndexingError
import pandas.util._test_decorators as td
from pandas import (
NA,
Categorical,
CategoricalDtype,
DataFrame,
Index,
Interval,
NaT,
Series,
Timestamp,
array,
concat,
date_range,
interval_range,
isna,
to_datetime,
)
import pandas._testing as tm
from pandas.api.types import is_scalar
from pandas.tests.indexing.common import check_indexing_smoketest_or_raises
# We pass through the error message from numpy
_slice_iloc_msg = re.escape(
"only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) "
"and integer or boolean arrays are valid indices"
)
class TestiLoc:
@pytest.mark.parametrize("key", [2, -1, [0, 1, 2]])
@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize(
"col",
["labels", "mixed", "ts", "floats", "empty"],
)
def test_iloc_getitem_int_and_list_int(self, key, kind, col, request):
obj = request.getfixturevalue(f"{kind}_{col}")
check_indexing_smoketest_or_raises(
obj,
"iloc",
key,
fails=IndexError,
)
# array of ints (GH5006), make sure that a single indexer is returning
# the correct type
class TestiLocBaseIndependent:
"""Tests Independent Of Base Class"""
@pytest.mark.parametrize(
"key",
[
slice(None),
slice(3),
range(3),
[0, 1, 2],
Index(range(3)),
np.asarray([0, 1, 2]),
],
)
@pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
def test_iloc_setitem_fullcol_categorical(self, indexer, key, using_array_manager):
frame = DataFrame({0: range(3)}, dtype=object)
cat = Categorical(["alpha", "beta", "gamma"])
if not using_array_manager:
assert frame._mgr.blocks[0]._can_hold_element(cat)
df = frame.copy()
orig_vals = df.values
indexer(df)[key, 0] = cat
expected = DataFrame({0: cat}).astype(object)
if not using_array_manager:
assert np.shares_memory(df[0].values, orig_vals)
tm.assert_frame_equal(df, expected)
# check we dont have a view on cat (may be undesired GH#39986)
df.iloc[0, 0] = "gamma"
assert cat[0] != "gamma"
# pre-2.0 with mixed dataframe ("split" path) we always overwrote the
# column. as of 2.0 we correctly write "into" the column, so
# we retain the object dtype.
frame = DataFrame({0: np.array([0, 1, 2], dtype=object), 1: range(3)})
df = frame.copy()
indexer(df)[key, 0] = cat
expected = DataFrame({0: Series(cat.astype(object), dtype=object), 1: range(3)})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("box", [array, Series])
def test_iloc_setitem_ea_inplace(self, frame_or_series, box, using_copy_on_write):
# GH#38952 Case with not setting a full column
# IntegerArray without NAs
arr = array([1, 2, 3, 4])
obj = frame_or_series(arr.to_numpy("i8"))
if frame_or_series is Series:
values = obj.values
else:
values = obj._mgr.arrays[0]
if frame_or_series is Series:
obj.iloc[:2] = box(arr[2:])
else:
obj.iloc[:2, 0] = box(arr[2:])
expected = frame_or_series(np.array([3, 4, 3, 4], dtype="i8"))
tm.assert_equal(obj, expected)
# Check that we are actually in-place
if frame_or_series is Series:
if using_copy_on_write:
assert obj.values is not values
assert np.shares_memory(obj.values, values)
else:
assert obj.values is values
else:
assert np.shares_memory(obj[0].values, values)
def test_is_scalar_access(self):
# GH#32085 index with duplicates doesn't matter for _is_scalar_access
index = Index([1, 2, 1])
ser = Series(range(3), index=index)
assert ser.iloc._is_scalar_access((1,))
df = ser.to_frame()
assert df.iloc._is_scalar_access((1, 0))
def test_iloc_exceeds_bounds(self):
# GH6296
# iloc should allow indexers that exceed the bounds
df = DataFrame(np.random.default_rng(2).random((20, 5)), columns=list("ABCDE"))
# lists of positions should raise IndexError!
msg = "positional indexers are out-of-bounds"
with pytest.raises(IndexError, match=msg):
df.iloc[:, [0, 1, 2, 3, 4, 5]]
with pytest.raises(IndexError, match=msg):
df.iloc[[1, 30]]
with pytest.raises(IndexError, match=msg):
df.iloc[[1, -30]]
with pytest.raises(IndexError, match=msg):
df.iloc[[100]]
s = df["A"]
with pytest.raises(IndexError, match=msg):
s.iloc[[100]]
with pytest.raises(IndexError, match=msg):
s.iloc[[-100]]
# still raise on a single indexer
msg = "single positional indexer is out-of-bounds"
with pytest.raises(IndexError, match=msg):
df.iloc[30]
with pytest.raises(IndexError, match=msg):
df.iloc[-30]
# GH10779
# single positive/negative indexer exceeding Series bounds should raise
# an IndexError
with pytest.raises(IndexError, match=msg):
s.iloc[30]
with pytest.raises(IndexError, match=msg):
s.iloc[-30]
# slices are ok
result = df.iloc[:, 4:10] # 0 < start < len < stop
expected = df.iloc[:, 4:]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, -4:-10] # stop < 0 < start < len
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down)
expected = df.iloc[:, :4:-1]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down)
expected = df.iloc[:, 4::-1]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, -10:4] # start < 0 < stop < len
expected = df.iloc[:, :4]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 10:4] # 0 < stop < len < start
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down)
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 10:11] # 0 < len < start < stop
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
# slice bounds exceeding is ok
result = s.iloc[18:30]
expected = s.iloc[18:]
tm.assert_series_equal(result, expected)
result = s.iloc[30:]
expected = s.iloc[:0]
tm.assert_series_equal(result, expected)
result = s.iloc[30::-1]
expected = s.iloc[::-1]
tm.assert_series_equal(result, expected)
# doc example
dfl = DataFrame(
np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB")
)
tm.assert_frame_equal(
dfl.iloc[:, 2:3],
DataFrame(index=dfl.index, columns=Index([], dtype=dfl.columns.dtype)),
)
tm.assert_frame_equal(dfl.iloc[:, 1:3], dfl.iloc[:, [1]])
tm.assert_frame_equal(dfl.iloc[4:6], dfl.iloc[[4]])
msg = "positional indexers are out-of-bounds"
with pytest.raises(IndexError, match=msg):
dfl.iloc[[4, 5, 6]]
msg = "single positional indexer is out-of-bounds"
with pytest.raises(IndexError, match=msg):
dfl.iloc[:, 4]
@pytest.mark.parametrize("index,columns", [(np.arange(20), list("ABCDE"))])
@pytest.mark.parametrize(
"index_vals,column_vals",
[
([slice(None), ["A", "D"]]),
(["1", "2"], slice(None)),
([datetime(2019, 1, 1)], slice(None)),
],
)
def test_iloc_non_integer_raises(self, index, columns, index_vals, column_vals):
# GH 25753
df = DataFrame(
np.random.default_rng(2).standard_normal((len(index), len(columns))),
index=index,
columns=columns,
)
msg = ".iloc requires numeric indexers, got"
with pytest.raises(IndexError, match=msg):
df.iloc[index_vals, column_vals]
def test_iloc_getitem_invalid_scalar(self, frame_or_series):
# GH 21982
obj = DataFrame(np.arange(100).reshape(10, 10))
obj = tm.get_obj(obj, frame_or_series)
with pytest.raises(TypeError, match="Cannot index by location index"):
obj.iloc["a"]
def test_iloc_array_not_mutating_negative_indices(self):
# GH 21867
array_with_neg_numbers = np.array([1, 2, -1])
array_copy = array_with_neg_numbers.copy()
df = DataFrame(
{"A": [100, 101, 102], "B": [103, 104, 105], "C": [106, 107, 108]},
index=[1, 2, 3],
)
df.iloc[array_with_neg_numbers]
tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
df.iloc[:, array_with_neg_numbers]
tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
def test_iloc_getitem_neg_int_can_reach_first_index(self):
# GH10547 and GH10779
# negative integers should be able to reach index 0
df = DataFrame({"A": [2, 3, 5], "B": [7, 11, 13]})
s = df["A"]
expected = df.iloc[0]
result = df.iloc[-3]
tm.assert_series_equal(result, expected)
expected = df.iloc[[0]]
result = df.iloc[[-3]]
tm.assert_frame_equal(result, expected)
expected = s.iloc[0]
result = s.iloc[-3]
assert result == expected
expected = s.iloc[[0]]
result = s.iloc[[-3]]
tm.assert_series_equal(result, expected)
# check the length 1 Series case highlighted in GH10547
expected = Series(["a"], index=["A"])
result = expected.iloc[[-1]]
tm.assert_series_equal(result, expected)
def test_iloc_getitem_dups(self):
# GH 6766
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
df = concat([df1, df2], axis=1)
# cross-sectional indexing
result = df.iloc[0, 0]
assert isna(result)
result = df.iloc[0, :]
expected = Series([np.nan, 1, 3, 3], index=["A", "B", "A", "B"], name=0)
tm.assert_series_equal(result, expected)
def test_iloc_getitem_array(self):
df = DataFrame(
[
{"A": 1, "B": 2, "C": 3},
{"A": 100, "B": 200, "C": 300},
{"A": 1000, "B": 2000, "C": 3000},
]
)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}])
tm.assert_frame_equal(df.iloc[[0]], expected)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
tm.assert_frame_equal(df.iloc[[0, 1]], expected)
expected = DataFrame([{"B": 2, "C": 3}, {"B": 2000, "C": 3000}], index=[0, 2])
result = df.iloc[[0, 2], [1, 2]]
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_bool(self):
df = DataFrame(
[
{"A": 1, "B": 2, "C": 3},
{"A": 100, "B": 200, "C": 300},
{"A": 1000, "B": 2000, "C": 3000},
]
)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
result = df.iloc[[True, True, False]]
tm.assert_frame_equal(result, expected)
expected = DataFrame(
[{"A": 1, "B": 2, "C": 3}, {"A": 1000, "B": 2000, "C": 3000}], index=[0, 2]
)
result = df.iloc[lambda x: x.index % 2 == 0]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index", [[True, False], [True, False, True, False]])
def test_iloc_getitem_bool_diff_len(self, index):
# GH26658
s = Series([1, 2, 3])
msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}"
with pytest.raises(IndexError, match=msg):
s.iloc[index]
def test_iloc_getitem_slice(self):
df = DataFrame(
[
{"A": 1, "B": 2, "C": 3},
{"A": 100, "B": 200, "C": 300},
{"A": 1000, "B": 2000, "C": 3000},
]
)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
result = df.iloc[:2]
tm.assert_frame_equal(result, expected)
expected = DataFrame([{"A": 100, "B": 200}], index=[1])
result = df.iloc[1:2, 0:2]
tm.assert_frame_equal(result, expected)
expected = DataFrame(
[{"A": 1, "C": 3}, {"A": 100, "C": 300}, {"A": 1000, "C": 3000}]
)
result = df.iloc[:, lambda df: [0, 2]]
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_slice_dups(self):
df1 = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=["A", "A", "B", "B"],
)
df2 = DataFrame(
np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2),
columns=["A", "C"],
)
# axis=1
df = concat([df1, df2], axis=1)
tm.assert_frame_equal(df.iloc[:, :4], df1)
tm.assert_frame_equal(df.iloc[:, 4:], df2)
df = concat([df2, df1], axis=1)
tm.assert_frame_equal(df.iloc[:, :2], df2)
tm.assert_frame_equal(df.iloc[:, 2:], df1)
exp = concat([df2, df1.iloc[:, [0]]], axis=1)
tm.assert_frame_equal(df.iloc[:, 0:3], exp)
# axis=0
df = concat([df, df], axis=0)
tm.assert_frame_equal(df.iloc[0:10, :2], df2)
tm.assert_frame_equal(df.iloc[0:10, 2:], df1)
tm.assert_frame_equal(df.iloc[10:, :2], df2)
tm.assert_frame_equal(df.iloc[10:, 2:], df1)
def test_iloc_setitem(self, warn_copy_on_write):
df = DataFrame(
np.random.default_rng(2).standard_normal((4, 4)),
index=np.arange(0, 8, 2),
columns=np.arange(0, 12, 3),
)
df.iloc[1, 1] = 1
result = df.iloc[1, 1]
assert result == 1
df.iloc[:, 2:3] = 0
expected = df.iloc[:, 2:3]
result = df.iloc[:, 2:3]
tm.assert_frame_equal(result, expected)
# GH5771
s = Series(0, index=[4, 5, 6])
s.iloc[1:2] += 1
expected = Series([0, 1, 0], index=[4, 5, 6])
tm.assert_series_equal(s, expected)
def test_iloc_setitem_axis_argument(self):
# GH45032
df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
df[1] = df[1].astype(object)
expected = DataFrame([[6, "c", 10], [7, "d", 11], [5, 5, 5]])
expected[1] = expected[1].astype(object)
df.iloc(axis=0)[2] = 5
tm.assert_frame_equal(df, expected)
df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
df[1] = df[1].astype(object)
expected = DataFrame([[6, "c", 5], [7, "d", 5], [8, "e", 5]])
expected[1] = expected[1].astype(object)
df.iloc(axis=1)[2] = 5
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_list(self):
# setitem with an iloc list
df = DataFrame(
np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]
)
df.iloc[[0, 1], [1, 2]]
df.iloc[[0, 1], [1, 2]] += 100
expected = DataFrame(
np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)),
index=["A", "B", "C"],
columns=["A", "B", "C"],
)
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_pandas_object(self):
# GH 17193
s_orig = Series([0, 1, 2, 3])
expected = Series([0, -1, -2, 3])
s = s_orig.copy()
s.iloc[Series([1, 2])] = [-1, -2]
tm.assert_series_equal(s, expected)
s = s_orig.copy()
s.iloc[Index([1, 2])] = [-1, -2]
tm.assert_series_equal(s, expected)
def test_iloc_setitem_dups(self):
# GH 6766
# iloc with a mask aligning from another iloc
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
df = concat([df1, df2], axis=1)
expected = df.fillna(3)
inds = np.isnan(df.iloc[:, 0])
mask = inds[inds].index
df.iloc[mask, 0] = df.iloc[mask, 2]
tm.assert_frame_equal(df, expected)
# del a dup column across blocks
expected = DataFrame({0: [1, 2], 1: [3, 4]})
expected.columns = ["B", "B"]
del df["A"]
tm.assert_frame_equal(df, expected)
# assign back to self
df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
tm.assert_frame_equal(df, expected)
# reversed x 2
df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_frame_duplicate_columns_multiple_blocks(
self, using_array_manager
):
# Same as the "assign back to self" check in test_iloc_setitem_dups
# but on a DataFrame with multiple blocks
df = DataFrame([[0, 1], [2, 3]], columns=["B", "B"])
# setting float values that can be held by existing integer arrays
# is inplace
df.iloc[:, 0] = df.iloc[:, 0].astype("f8")
if not using_array_manager:
assert len(df._mgr.blocks) == 1
# if the assigned values cannot be held by existing integer arrays,
# we cast
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
df.iloc[:, 0] = df.iloc[:, 0] + 0.5
if not using_array_manager:
assert len(df._mgr.blocks) == 2
expected = df.copy()
# assign back to self
df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
tm.assert_frame_equal(df, expected)
# TODO: GH#27620 this test used to compare iloc against ix; check if this
# is redundant with another test comparing iloc against loc
def test_iloc_getitem_frame(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=range(0, 20, 2),
columns=range(0, 8, 2),
)
result = df.iloc[2]
exp = df.loc[4]
tm.assert_series_equal(result, exp)
result = df.iloc[2, 2]
exp = df.loc[4, 4]
assert result == exp
# slice
result = df.iloc[4:8]
expected = df.loc[8:14]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 2:3]
expected = df.loc[:, 4:5]
tm.assert_frame_equal(result, expected)
# list of integers
result = df.iloc[[0, 1, 3]]
expected = df.loc[[0, 2, 6]]
tm.assert_frame_equal(result, expected)
result = df.iloc[[0, 1, 3], [0, 1]]
expected = df.loc[[0, 2, 6], [0, 2]]
tm.assert_frame_equal(result, expected)
# neg indices
result = df.iloc[[-1, 1, 3], [-1, 1]]
expected = df.loc[[18, 2, 6], [6, 2]]
tm.assert_frame_equal(result, expected)
# dups indices
result = df.iloc[[-1, -1, 1, 3], [-1, 1]]
expected = df.loc[[18, 18, 2, 6], [6, 2]]
tm.assert_frame_equal(result, expected)
# with index-like
s = Series(index=range(1, 5), dtype=object)
result = df.iloc[s.index]
expected = df.loc[[2, 4, 6, 8]]
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_labelled_frame(self):
# try with labelled frame
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=list("abcdefghij"),
columns=list("ABCD"),
)
result = df.iloc[1, 1]
exp = df.loc["b", "B"]
assert result == exp
result = df.iloc[:, 2:3]
expected = df.loc[:, ["C"]]
tm.assert_frame_equal(result, expected)
# negative indexing
result = df.iloc[-1, -1]
exp = df.loc["j", "D"]
assert result == exp
# out-of-bounds exception
msg = "index 5 is out of bounds for axis 0 with size 4|index out of bounds"
with pytest.raises(IndexError, match=msg):
df.iloc[10, 5]
# trying to use a label
msg = (
r"Location based indexing can only have \[integer, integer "
r"slice \(START point is INCLUDED, END point is EXCLUDED\), "
r"listlike of integers, boolean array\] types"
)
with pytest.raises(ValueError, match=msg):
df.iloc["j", "D"]
def test_iloc_getitem_doc_issue(self, using_array_manager):
# multi axis slicing issue with single block
# surfaced in GH 6059
arr = np.random.default_rng(2).standard_normal((6, 4))
index = date_range("20130101", periods=6)
columns = list("ABCD")
df = DataFrame(arr, index=index, columns=columns)
# defines ref_locs
df.describe()
result = df.iloc[3:5, 0:2]
expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2])
tm.assert_frame_equal(result, expected)
# for dups
df.columns = list("aaaa")
result = df.iloc[3:5, 0:2]
expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list("aa"))
tm.assert_frame_equal(result, expected)
# related
arr = np.random.default_rng(2).standard_normal((6, 4))
index = list(range(0, 12, 2))
columns = list(range(0, 8, 2))
df = DataFrame(arr, index=index, columns=columns)
if not using_array_manager:
df._mgr.blocks[0].mgr_locs
result = df.iloc[1:5, 2:4]
expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4])
tm.assert_frame_equal(result, expected)
def test_iloc_setitem_series(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=list("abcdefghij"),
columns=list("ABCD"),
)
df.iloc[1, 1] = 1
result = df.iloc[1, 1]
assert result == 1
df.iloc[:, 2:3] = 0
expected = df.iloc[:, 2:3]
result = df.iloc[:, 2:3]
tm.assert_frame_equal(result, expected)
s = Series(np.random.default_rng(2).standard_normal(10), index=range(0, 20, 2))
s.iloc[1] = 1
result = s.iloc[1]
assert result == 1
s.iloc[:4] = 0
expected = s.iloc[:4]
result = s.iloc[:4]
tm.assert_series_equal(result, expected)
s = Series([-1] * 6)
s.iloc[0::2] = [0, 2, 4]
s.iloc[1::2] = [1, 3, 5]
result = s
expected = Series([0, 1, 2, 3, 4, 5])
tm.assert_series_equal(result, expected)
def test_iloc_setitem_list_of_lists(self):
# GH 7551
# list-of-list is set incorrectly in mixed vs. single dtyped frames
df = DataFrame(
{"A": np.arange(5, dtype="int64"), "B": np.arange(5, 10, dtype="int64")}
)
df.iloc[2:4] = [[10, 11], [12, 13]]
expected = DataFrame({"A": [0, 1, 10, 12, 4], "B": [5, 6, 11, 13, 9]})
tm.assert_frame_equal(df, expected)
df = DataFrame(
{"A": ["a", "b", "c", "d", "e"], "B": np.arange(5, 10, dtype="int64")}
)
df.iloc[2:4] = [["x", 11], ["y", 13]]
expected = DataFrame({"A": ["a", "b", "x", "y", "e"], "B": [5, 6, 11, 13, 9]})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("indexer", [[0], slice(None, 1, None), np.array([0])])
@pytest.mark.parametrize("value", [["Z"], np.array(["Z"])])
def test_iloc_setitem_with_scalar_index(self, indexer, value):
# GH #19474
# assigning like "df.iloc[0, [0]] = ['Z']" should be evaluated
# elementwisely, not using "setter('A', ['Z'])".
# Set object type to avoid upcast when setting "Z"
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object})
df.iloc[0, indexer] = value
result = df.iloc[0, 0]
assert is_scalar(result) and result == "Z"
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_iloc_mask(self):
# GH 3631, iloc with a mask (of a series) should raise
df = DataFrame(list(range(5)), index=list("ABCDE"), columns=["a"])
mask = df.a % 2 == 0
msg = "iLocation based boolean indexing cannot use an indexable as a mask"
with pytest.raises(ValueError, match=msg):
df.iloc[mask]
mask.index = range(len(mask))
msg = "iLocation based boolean indexing on an integer type is not available"
with pytest.raises(NotImplementedError, match=msg):
df.iloc[mask]
# ndarray ok
result = df.iloc[np.array([True] * len(mask), dtype=bool)]
tm.assert_frame_equal(result, df)
# the possibilities
locs = np.arange(4)
nums = 2**locs
reps = [bin(num) for num in nums]
df = DataFrame({"locs": locs, "nums": nums}, reps)
expected = {
(None, ""): "0b1100",
(None, ".loc"): "0b1100",
(None, ".iloc"): "0b1100",
("index", ""): "0b11",
("index", ".loc"): "0b11",
("index", ".iloc"): (
"iLocation based boolean indexing cannot use an indexable as a mask"
),
("locs", ""): "Unalignable boolean Series provided as indexer "
"(index of the boolean Series and of the indexed "
"object do not match).",
("locs", ".loc"): "Unalignable boolean Series provided as indexer "
"(index of the boolean Series and of the "
"indexed object do not match).",
("locs", ".iloc"): (
"iLocation based boolean indexing on an "
"integer type is not available"
),
}
# UserWarnings from reindex of a boolean mask
for idx in [None, "index", "locs"]:
mask = (df.nums > 2).values
if idx:
mask_index = getattr(df, idx)[::-1]
mask = Series(mask, list(mask_index))
for method in ["", ".loc", ".iloc"]:
try:
if method:
accessor = getattr(df, method[1:])
else:
accessor = df
answer = str(bin(accessor[mask]["nums"].sum()))
except (ValueError, IndexingError, NotImplementedError) as err:
answer = str(err)
key = (
idx,
method,
)
r = expected.get(key)
if r != answer:
raise AssertionError(
f"[{key}] does not match [{answer}], received [{r}]"
)
def test_iloc_non_unique_indexing(self):
# GH 4017, non-unique indexing (on the axis)
df = DataFrame({"A": [0.1] * 3000, "B": [1] * 3000})
idx = np.arange(30) * 99
expected = df.iloc[idx]
df3 = concat([df, 2 * df, 3 * df])
result = df3.iloc[idx]
tm.assert_frame_equal(result, expected)
df2 = DataFrame({"A": [0.1] * 1000, "B": [1] * 1000})
df2 = concat([df2, 2 * df2, 3 * df2])
with pytest.raises(KeyError, match="not in index"):
df2.loc[idx]
def test_iloc_empty_list_indexer_is_ok(self):
df = DataFrame(
np.ones((5, 2)),
index=Index([f"i-{i}" for i in range(5)], name="a"),
columns=Index([f"i-{i}" for i in range(2)], name="a"),
)
# vertical empty
tm.assert_frame_equal(
df.iloc[:, []],
df.iloc[:, :0],
check_index_type=True,
check_column_type=True,
)
# horizontal empty
tm.assert_frame_equal(
df.iloc[[], :],
df.iloc[:0, :],
check_index_type=True,
check_column_type=True,
)
# horizontal empty
tm.assert_frame_equal(
df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True
)
def test_identity_slice_returns_new_object(
self, using_copy_on_write, warn_copy_on_write
):
# GH13873
original_df = DataFrame({"a": [1, 2, 3]})
sliced_df = original_df.iloc[:]
assert sliced_df is not original_df
# should be a shallow copy
assert np.shares_memory(original_df["a"], sliced_df["a"])
# Setting using .loc[:, "a"] sets inplace so alters both sliced and orig
# depending on CoW
with tm.assert_cow_warning(warn_copy_on_write):
original_df.loc[:, "a"] = [4, 4, 4]
if using_copy_on_write:
assert (sliced_df["a"] == [1, 2, 3]).all()
else:
assert (sliced_df["a"] == 4).all()
original_series = Series([1, 2, 3, 4, 5, 6])
sliced_series = original_series.iloc[:]
assert sliced_series is not original_series
# should also be a shallow copy
with tm.assert_cow_warning(warn_copy_on_write):
original_series[:3] = [7, 8, 9]
if using_copy_on_write:
# shallow copy not updated (CoW)
assert all(sliced_series[:3] == [1, 2, 3])
else:
assert all(sliced_series[:3] == [7, 8, 9])
def test_indexing_zerodim_np_array(self):
# GH24919
df = DataFrame([[1, 2], [3, 4]])
result = df.iloc[np.array(0)]
s = Series([1, 2], name=0)
tm.assert_series_equal(result, s)
def test_series_indexing_zerodim_np_array(self):
# GH24919
s = Series([1, 2])
result = s.iloc[np.array(0)]
assert result == 1
def test_iloc_setitem_categorical_updates_inplace(self):
# Mixed dtype ensures we go through take_split_path in setitem_with_indexer
cat = Categorical(["A", "B", "C"])
df = DataFrame({1: cat, 2: [1, 2, 3]}, copy=False)
assert tm.shares_memory(df[1], cat)
# With the enforcement of GH#45333 in 2.0, this modifies original
# values inplace
df.iloc[:, 0] = cat[::-1]
assert tm.shares_memory(df[1], cat)
expected = Categorical(["C", "B", "A"], categories=["A", "B", "C"])
tm.assert_categorical_equal(cat, expected)
def test_iloc_with_boolean_operation(self):
# GH 20627
result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]])
result.iloc[result.index <= 2] *= 2
expected = DataFrame([[0, 2], [4, 6], [8, 10], [6, np.nan]])
tm.assert_frame_equal(result, expected)
result.iloc[result.index > 2] *= 2
expected = DataFrame([[0, 2], [4, 6], [8, 10], [12, np.nan]])
tm.assert_frame_equal(result, expected)
result.iloc[[True, True, False, False]] *= 2
expected = DataFrame([[0, 4], [8, 12], [8, 10], [12, np.nan]])
tm.assert_frame_equal(result, expected)
result.iloc[[False, False, True, True]] /= 2
expected = DataFrame([[0, 4.0], [8, 12.0], [4, 5.0], [6, np.nan]])
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_singlerow_slice_categoricaldtype_gives_series(self):
# GH#29521
df = DataFrame({"x": Categorical("a b c d e".split())})
result = df.iloc[0]
raw_cat = Categorical(["a"], categories=["a", "b", "c", "d", "e"])
expected = Series(raw_cat, index=["x"], name=0, dtype="category")
tm.assert_series_equal(result, expected)
def test_iloc_getitem_categorical_values(self):
# GH#14580
# test iloc() on Series with Categorical data
ser = Series([1, 2, 3]).astype("category")
# get slice
result = ser.iloc[0:2]
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
# get list of indexes
result = ser.iloc[[0, 1]]
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
# get boolean array
result = ser.iloc[[True, False, False]]
expected = Series([1]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("value", [None, NaT, np.nan])
def test_iloc_setitem_td64_values_cast_na(self, value):
# GH#18586
series = Series([0, 1, 2], dtype="timedelta64[ns]")
series.iloc[0] = value
expected = Series([NaT, 1, 2], dtype="timedelta64[ns]")
tm.assert_series_equal(series, expected)
@pytest.mark.parametrize("not_na", [Interval(0, 1), "a", 1.0])
def test_setitem_mix_of_nan_and_interval(self, not_na, nulls_fixture):
# GH#27937
dtype = CategoricalDtype(categories=[not_na])
ser = Series(
[nulls_fixture, nulls_fixture, nulls_fixture, nulls_fixture], dtype=dtype
)
ser.iloc[:3] = [nulls_fixture, not_na, nulls_fixture]
exp = Series([nulls_fixture, not_na, nulls_fixture, nulls_fixture], dtype=dtype)
tm.assert_series_equal(ser, exp)
def test_iloc_setitem_empty_frame_raises_with_3d_ndarray(self):
idx = Index([])
obj = DataFrame(
np.random.default_rng(2).standard_normal((len(idx), len(idx))),
index=idx,
columns=idx,
)
nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
msg = f"Cannot set values with ndim > {obj.ndim}"
with pytest.raises(ValueError, match=msg):
obj.iloc[nd3] = 0
@pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
def test_iloc_getitem_read_only_values(self, indexer):
# GH#10043 this is fundamentally a test for iloc, but test loc while
# we're here
rw_array = np.eye(10)
rw_df = DataFrame(rw_array)
ro_array = np.eye(10)
ro_array.setflags(write=False)
ro_df = DataFrame(ro_array)
tm.assert_frame_equal(indexer(rw_df)[[1, 2, 3]], indexer(ro_df)[[1, 2, 3]])
tm.assert_frame_equal(indexer(rw_df)[[1]], indexer(ro_df)[[1]])
tm.assert_series_equal(indexer(rw_df)[1], indexer(ro_df)[1])
tm.assert_frame_equal(indexer(rw_df)[1:3], indexer(ro_df)[1:3])
def test_iloc_getitem_readonly_key(self):
# GH#17192 iloc with read-only array raising TypeError
df = DataFrame({"data": np.ones(100, dtype="float64")})
indices = np.array([1, 3, 6])
indices.flags.writeable = False
result = df.iloc[indices]
expected = df.loc[[1, 3, 6]]
tm.assert_frame_equal(result, expected)
result = df["data"].iloc[indices]
expected = df["data"].loc[[1, 3, 6]]
tm.assert_series_equal(result, expected)
def test_iloc_assign_series_to_df_cell(self):
# GH 37593
df = DataFrame(columns=["a"], index=[0])
df.iloc[0, 0] = Series([1, 2, 3])
expected = DataFrame({"a": [Series([1, 2, 3])]}, columns=["a"], index=[0])
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("klass", [list, np.array])
def test_iloc_setitem_bool_indexer(self, klass):
# GH#36741
df = DataFrame({"flag": ["x", "y", "z"], "value": [1, 3, 4]})
indexer = klass([True, False, False])
df.iloc[indexer, 1] = df.iloc[indexer, 1] * 2
expected = DataFrame({"flag": ["x", "y", "z"], "value": [2, 3, 4]})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("indexer", [[1], slice(1, 2)])
def test_iloc_setitem_pure_position_based(self, indexer):
# GH#22046
df1 = DataFrame({"a2": [11, 12, 13], "b2": [14, 15, 16]})
df2 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
df2.iloc[:, indexer] = df1.iloc[:, [0]]
expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]})
tm.assert_frame_equal(df2, expected)
def test_iloc_setitem_dictionary_value(self):
# GH#37728
df = DataFrame({"x": [1, 2], "y": [2, 2]})
rhs = {"x": 9, "y": 99}
df.iloc[1] = rhs
expected = DataFrame({"x": [1, 9], "y": [2, 99]})
tm.assert_frame_equal(df, expected)
# GH#38335 same thing, mixed dtypes
df = DataFrame({"x": [1, 2], "y": [2.0, 2.0]})
df.iloc[1] = rhs
expected = DataFrame({"x": [1, 9], "y": [2.0, 99.0]})
tm.assert_frame_equal(df, expected)
def test_iloc_getitem_float_duplicates(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 3)),
index=[0.1, 0.2, 0.2],
columns=list("abc"),
)
expect = df.iloc[1:]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[1:, 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
df.index = [1, 0.2, 0.2]
expect = df.iloc[1:]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[1:, 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
df = DataFrame(
np.random.default_rng(2).standard_normal((4, 3)),
index=[1, 0.2, 0.2, 1],
columns=list("abc"),
)
expect = df.iloc[1:-1]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[1:-1, 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
df.index = [0.1, 0.2, 2, 0.2]
expect = df.iloc[[1, -1]]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[[1, -1], 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
def test_iloc_setitem_custom_object(self):
# iloc with an object
class TO:
def __init__(self, value) -> None:
self.value = value
def __str__(self) -> str:
return f"[{self.value}]"
__repr__ = __str__
def __eq__(self, other) -> bool:
return self.value == other.value
def view(self):
return self
df = DataFrame(index=[0, 1], columns=[0])
df.iloc[1, 0] = TO(1)
df.iloc[1, 0] = TO(2)
result = DataFrame(index=[0, 1], columns=[0])
result.iloc[1, 0] = TO(2)
tm.assert_frame_equal(result, df)
# remains object dtype even after setting it back
df = DataFrame(index=[0, 1], columns=[0])
df.iloc[1, 0] = TO(1)
df.iloc[1, 0] = np.nan
result = DataFrame(index=[0, 1], columns=[0])
tm.assert_frame_equal(result, df)
def test_iloc_getitem_with_duplicates(self):
df = DataFrame(
np.random.default_rng(2).random((3, 3)),
columns=list("ABC"),
index=list("aab"),
)
result = df.iloc[0]
assert isinstance(result, Series)
tm.assert_almost_equal(result.values, df.values[0])
result = df.T.iloc[:, 0]
assert isinstance(result, Series)
tm.assert_almost_equal(result.values, df.values[0])
def test_iloc_getitem_with_duplicates2(self):
# GH#2259
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2])
result = df.iloc[:, [0]]
expected = df.take([0], axis=1)
tm.assert_frame_equal(result, expected)
def test_iloc_interval(self):
# GH#17130
df = DataFrame({Interval(1, 2): [1, 2]})
result = df.iloc[0]
expected = Series({Interval(1, 2): 1}, name=0)
tm.assert_series_equal(result, expected)
result = df.iloc[:, 0]
expected = Series([1, 2], name=Interval(1, 2))
tm.assert_series_equal(result, expected)
result = df.copy()
result.iloc[:, 0] += 1
expected = DataFrame({Interval(1, 2): [2, 3]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("indexing_func", [list, np.array])
@pytest.mark.parametrize("rhs_func", [list, np.array])
def test_loc_setitem_boolean_list(self, rhs_func, indexing_func):
# GH#20438 testing specifically list key, not arraylike
ser = Series([0, 1, 2])
ser.iloc[indexing_func([True, False, True])] = rhs_func([5, 10])
expected = Series([5, 1, 10])
tm.assert_series_equal(ser, expected)
df = DataFrame({"a": [0, 1, 2]})
df.iloc[indexing_func([True, False, True])] = rhs_func([[5], [10]])
expected = DataFrame({"a": [5, 1, 10]})
tm.assert_frame_equal(df, expected)
def test_iloc_getitem_slice_negative_step_ea_block(self):
# GH#44551
df = DataFrame({"A": [1, 2, 3]}, dtype="Int64")
res = df.iloc[:, ::-1]
tm.assert_frame_equal(res, df)
df["B"] = "foo"
res = df.iloc[:, ::-1]
expected = DataFrame({"B": df["B"], "A": df["A"]})
tm.assert_frame_equal(res, expected)
def test_iloc_setitem_2d_ndarray_into_ea_block(self):
# GH#44703
df = DataFrame({"status": ["a", "b", "c"]}, dtype="category")
df.iloc[np.array([0, 1]), np.array([0])] = np.array([["a"], ["a"]])
expected = DataFrame({"status": ["a", "a", "c"]}, dtype=df["status"].dtype)
tm.assert_frame_equal(df, expected)
@td.skip_array_manager_not_yet_implemented
def test_iloc_getitem_int_single_ea_block_view(self):
# GH#45241
# TODO: make an extension interface test for this?
arr = interval_range(1, 10.0)._values
df = DataFrame(arr)
# ser should be a *view* on the DataFrame data
ser = df.iloc[2]
# if we have a view, then changing arr[2] should also change ser[0]
assert arr[2] != arr[-1] # otherwise the rest isn't meaningful
arr[2] = arr[-1]
assert ser[0] == arr[-1]
def test_iloc_setitem_multicolumn_to_datetime(self):
# GH#20511
df = DataFrame({"A": ["2022-01-01", "2022-01-02"], "B": ["2021", "2022"]})
df.iloc[:, [0]] = DataFrame({"A": to_datetime(["2021", "2022"])})
expected = DataFrame(
{
"A": [
Timestamp("2021-01-01 00:00:00"),
Timestamp("2022-01-01 00:00:00"),
],
"B": ["2021", "2022"],
}
)
tm.assert_frame_equal(df, expected, check_dtype=False)
class TestILocErrors:
# NB: this test should work for _any_ Series we can pass as
# series_with_simple_index
def test_iloc_float_raises(
self, series_with_simple_index, frame_or_series, warn_copy_on_write
):
# GH#4892
# float_indexers should raise exceptions
# on appropriate Index types & accessors
# this duplicates the code below
# but is specifically testing for the error
# message
obj = series_with_simple_index
if frame_or_series is DataFrame:
obj = obj.to_frame()
msg = "Cannot index by location index with a non-integer key"
with pytest.raises(TypeError, match=msg):
obj.iloc[3.0]
with pytest.raises(IndexError, match=_slice_iloc_msg):
with tm.assert_cow_warning(
warn_copy_on_write and frame_or_series is DataFrame
):
obj.iloc[3.0] = 0
def test_iloc_getitem_setitem_fancy_exceptions(self, float_frame):
with pytest.raises(IndexingError, match="Too many indexers"):
float_frame.iloc[:, :, :]
with pytest.raises(IndexError, match="too many indices for array"):
# GH#32257 we let numpy do validation, get their exception
float_frame.iloc[:, :, :] = 1
def test_iloc_frame_indexer(self):
# GH#39004
df = DataFrame({"a": [1, 2, 3]})
indexer = DataFrame({"a": [True, False, True]})
msg = "DataFrame indexer for .iloc is not supported. Consider using .loc"
with pytest.raises(TypeError, match=msg):
df.iloc[indexer] = 1
msg = (
"DataFrame indexer is not allowed for .iloc\n"
"Consider using .loc for automatic alignment."
)
with pytest.raises(IndexError, match=msg):
df.iloc[indexer]
class TestILocSetItemDuplicateColumns:
def test_iloc_setitem_scalar_duplicate_columns(self):
# GH#15686, duplicate columns and mixed dtype
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
df = concat([df1, df2], axis=1)
df.iloc[0, 0] = -1
assert df.iloc[0, 0] == -1
assert df.iloc[0, 2] == 3
assert df.dtypes.iloc[2] == np.int64
def test_iloc_setitem_list_duplicate_columns(self):
# GH#22036 setting with same-sized list
df = DataFrame([[0, "str", "str2"]], columns=["a", "b", "b"])
df.iloc[:, 2] = ["str3"]
expected = DataFrame([[0, "str", "str3"]], columns=["a", "b", "b"])
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_series_duplicate_columns(self):
df = DataFrame(
np.arange(8, dtype=np.int64).reshape(2, 4), columns=["A", "B", "A", "B"]
)
df.iloc[:, 0] = df.iloc[:, 0].astype(np.float64)
assert df.dtypes.iloc[2] == np.int64
@pytest.mark.parametrize(
["dtypes", "init_value", "expected_value"],
[("int64", "0", 0), ("float", "1.2", 1.2)],
)
def test_iloc_setitem_dtypes_duplicate_columns(
self, dtypes, init_value, expected_value
):
# GH#22035
df = DataFrame(
[[init_value, "str", "str2"]], columns=["a", "b", "b"], dtype=object
)
# with the enforcement of GH#45333 in 2.0, this sets values inplace,
# so we retain object dtype
df.iloc[:, 0] = df.iloc[:, 0].astype(dtypes)
expected_df = DataFrame(
[[expected_value, "str", "str2"]],
columns=["a", "b", "b"],
dtype=object,
)
tm.assert_frame_equal(df, expected_df)
class TestILocCallable:
def test_frame_iloc_getitem_callable(self):
# GH#11485
df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
# return location
res = df.iloc[lambda x: [1, 3]]
tm.assert_frame_equal(res, df.iloc[[1, 3]])
res = df.iloc[lambda x: [1, 3], :]
tm.assert_frame_equal(res, df.iloc[[1, 3], :])
res = df.iloc[lambda x: [1, 3], lambda x: 0]
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
res = df.iloc[lambda x: [1, 3], lambda x: [0]]
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
# mixture
res = df.iloc[[1, 3], lambda x: 0]
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
res = df.iloc[[1, 3], lambda x: [0]]
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
res = df.iloc[lambda x: [1, 3], 0]
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
res = df.iloc[lambda x: [1, 3], [0]]
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
def test_frame_iloc_setitem_callable(self):
# GH#11485
df = DataFrame(
{"X": [1, 2, 3, 4], "Y": Series(list("aabb"), dtype=object)},
index=list("ABCD"),
)
# return location
res = df.copy()
res.iloc[lambda x: [1, 3]] = 0
exp = df.copy()
exp.iloc[[1, 3]] = 0
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], :] = -1
exp = df.copy()
exp.iloc[[1, 3], :] = -1
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], lambda x: 0] = 5
exp = df.copy()
exp.iloc[[1, 3], 0] = 5
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], lambda x: [0]] = 25
exp = df.copy()
exp.iloc[[1, 3], [0]] = 25
tm.assert_frame_equal(res, exp)
# mixture
res = df.copy()
res.iloc[[1, 3], lambda x: 0] = -3
exp = df.copy()
exp.iloc[[1, 3], 0] = -3
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[[1, 3], lambda x: [0]] = -5
exp = df.copy()
exp.iloc[[1, 3], [0]] = -5
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], 0] = 10
exp = df.copy()
exp.iloc[[1, 3], 0] = 10
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], [0]] = [-5, -5]
exp = df.copy()
exp.iloc[[1, 3], [0]] = [-5, -5]
tm.assert_frame_equal(res, exp)
class TestILocSeries:
def test_iloc(self, using_copy_on_write, warn_copy_on_write):
ser = Series(
np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
)
ser_original = ser.copy()
for i in range(len(ser)):
result = ser.iloc[i]
exp = ser[ser.index[i]]
tm.assert_almost_equal(result, exp)
# pass a slice
result = ser.iloc[slice(1, 3)]
expected = ser.loc[2:4]
tm.assert_series_equal(result, expected)
# test slice is a view
with tm.assert_produces_warning(None):
# GH#45324 make sure we aren't giving a spurious FutureWarning
with tm.assert_cow_warning(warn_copy_on_write):
result[:] = 0
if using_copy_on_write:
tm.assert_series_equal(ser, ser_original)
else:
assert (ser.iloc[1:3] == 0).all()
# list of integers
result = ser.iloc[[0, 2, 3, 4, 5]]
expected = ser.reindex(ser.index[[0, 2, 3, 4, 5]])
tm.assert_series_equal(result, expected)
def test_iloc_getitem_nonunique(self):
ser = Series([0, 1, 2], index=[0, 1, 0])
assert ser.iloc[2] == 2
def test_iloc_setitem_pure_position_based(self):
# GH#22046
ser1 = Series([1, 2, 3])
ser2 = Series([4, 5, 6], index=[1, 0, 2])
ser1.iloc[1:3] = ser2.iloc[1:3]
expected = Series([1, 5, 6])
tm.assert_series_equal(ser1, expected)
def test_iloc_nullable_int64_size_1_nan(self):
# GH 31861
result = DataFrame({"a": ["test"], "b": [np.nan]})
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
result.loc[:, "b"] = result.loc[:, "b"].astype("Int64")
expected = DataFrame({"a": ["test"], "b": array([NA], dtype="Int64")})
tm.assert_frame_equal(result, expected)