Traktor/myenv/Lib/site-packages/pandas/tests/io/test_parquet.py
2024-05-23 01:57:24 +02:00

1425 lines
49 KiB
Python

""" test parquet compat """
import datetime
from decimal import Decimal
from io import BytesIO
import os
import pathlib
import numpy as np
import pytest
from pandas._config import using_copy_on_write
from pandas._config.config import _get_option
from pandas.compat import is_platform_windows
from pandas.compat.pyarrow import (
pa_version_under11p0,
pa_version_under13p0,
pa_version_under15p0,
)
import pandas as pd
import pandas._testing as tm
from pandas.util.version import Version
from pandas.io.parquet import (
FastParquetImpl,
PyArrowImpl,
get_engine,
read_parquet,
to_parquet,
)
try:
import pyarrow
_HAVE_PYARROW = True
except ImportError:
_HAVE_PYARROW = False
try:
import fastparquet
_HAVE_FASTPARQUET = True
except ImportError:
_HAVE_FASTPARQUET = False
# TODO(ArrayManager) fastparquet relies on BlockManager internals
pytestmark = [
pytest.mark.filterwarnings("ignore:DataFrame._data is deprecated:FutureWarning"),
pytest.mark.filterwarnings(
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
),
]
# setup engines & skips
@pytest.fixture(
params=[
pytest.param(
"fastparquet",
marks=pytest.mark.skipif(
not _HAVE_FASTPARQUET
or _get_option("mode.data_manager", silent=True) == "array",
reason="fastparquet is not installed or ArrayManager is used",
),
),
pytest.param(
"pyarrow",
marks=pytest.mark.skipif(
not _HAVE_PYARROW, reason="pyarrow is not installed"
),
),
]
)
def engine(request):
return request.param
@pytest.fixture
def pa():
if not _HAVE_PYARROW:
pytest.skip("pyarrow is not installed")
return "pyarrow"
@pytest.fixture
def fp():
if not _HAVE_FASTPARQUET:
pytest.skip("fastparquet is not installed")
elif _get_option("mode.data_manager", silent=True) == "array":
pytest.skip("ArrayManager is not supported with fastparquet")
return "fastparquet"
@pytest.fixture
def df_compat():
return pd.DataFrame({"A": [1, 2, 3], "B": "foo"})
@pytest.fixture
def df_cross_compat():
df = pd.DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
# 'c': np.arange(3, 6).astype('u1'),
"d": np.arange(4.0, 7.0, dtype="float64"),
"e": [True, False, True],
"f": pd.date_range("20130101", periods=3),
# 'g': pd.date_range('20130101', periods=3,
# tz='US/Eastern'),
# 'h': pd.date_range('20130101', periods=3, freq='ns')
}
)
return df
@pytest.fixture
def df_full():
return pd.DataFrame(
{
"string": list("abc"),
"string_with_nan": ["a", np.nan, "c"],
"string_with_none": ["a", None, "c"],
"bytes": [b"foo", b"bar", b"baz"],
"unicode": ["foo", "bar", "baz"],
"int": list(range(1, 4)),
"uint": np.arange(3, 6).astype("u1"),
"float": np.arange(4.0, 7.0, dtype="float64"),
"float_with_nan": [2.0, np.nan, 3.0],
"bool": [True, False, True],
"datetime": pd.date_range("20130101", periods=3),
"datetime_with_nat": [
pd.Timestamp("20130101"),
pd.NaT,
pd.Timestamp("20130103"),
],
}
)
@pytest.fixture(
params=[
datetime.datetime.now(datetime.timezone.utc),
datetime.datetime.now(datetime.timezone.min),
datetime.datetime.now(datetime.timezone.max),
datetime.datetime.strptime("2019-01-04T16:41:24+0200", "%Y-%m-%dT%H:%M:%S%z"),
datetime.datetime.strptime("2019-01-04T16:41:24+0215", "%Y-%m-%dT%H:%M:%S%z"),
datetime.datetime.strptime("2019-01-04T16:41:24-0200", "%Y-%m-%dT%H:%M:%S%z"),
datetime.datetime.strptime("2019-01-04T16:41:24-0215", "%Y-%m-%dT%H:%M:%S%z"),
]
)
def timezone_aware_date_list(request):
return request.param
def check_round_trip(
df,
engine=None,
path=None,
write_kwargs=None,
read_kwargs=None,
expected=None,
check_names=True,
check_like=False,
check_dtype=True,
repeat=2,
):
"""Verify parquet serializer and deserializer produce the same results.
Performs a pandas to disk and disk to pandas round trip,
then compares the 2 resulting DataFrames to verify equality.
Parameters
----------
df: Dataframe
engine: str, optional
'pyarrow' or 'fastparquet'
path: str, optional
write_kwargs: dict of str:str, optional
read_kwargs: dict of str:str, optional
expected: DataFrame, optional
Expected deserialization result, otherwise will be equal to `df`
check_names: list of str, optional
Closed set of column names to be compared
check_like: bool, optional
If True, ignore the order of index & columns.
repeat: int, optional
How many times to repeat the test
"""
write_kwargs = write_kwargs or {"compression": None}
read_kwargs = read_kwargs or {}
if expected is None:
expected = df
if engine:
write_kwargs["engine"] = engine
read_kwargs["engine"] = engine
def compare(repeat):
for _ in range(repeat):
df.to_parquet(path, **write_kwargs)
actual = read_parquet(path, **read_kwargs)
if "string_with_nan" in expected:
expected.loc[1, "string_with_nan"] = None
tm.assert_frame_equal(
expected,
actual,
check_names=check_names,
check_like=check_like,
check_dtype=check_dtype,
)
if path is None:
with tm.ensure_clean() as path:
compare(repeat)
else:
compare(repeat)
def check_partition_names(path, expected):
"""Check partitions of a parquet file are as expected.
Parameters
----------
path: str
Path of the dataset.
expected: iterable of str
Expected partition names.
"""
import pyarrow.dataset as ds
dataset = ds.dataset(path, partitioning="hive")
assert dataset.partitioning.schema.names == expected
def test_invalid_engine(df_compat):
msg = "engine must be one of 'pyarrow', 'fastparquet'"
with pytest.raises(ValueError, match=msg):
check_round_trip(df_compat, "foo", "bar")
def test_options_py(df_compat, pa):
# use the set option
with pd.option_context("io.parquet.engine", "pyarrow"):
check_round_trip(df_compat)
def test_options_fp(df_compat, fp):
# use the set option
with pd.option_context("io.parquet.engine", "fastparquet"):
check_round_trip(df_compat)
def test_options_auto(df_compat, fp, pa):
# use the set option
with pd.option_context("io.parquet.engine", "auto"):
check_round_trip(df_compat)
def test_options_get_engine(fp, pa):
assert isinstance(get_engine("pyarrow"), PyArrowImpl)
assert isinstance(get_engine("fastparquet"), FastParquetImpl)
with pd.option_context("io.parquet.engine", "pyarrow"):
assert isinstance(get_engine("auto"), PyArrowImpl)
assert isinstance(get_engine("pyarrow"), PyArrowImpl)
assert isinstance(get_engine("fastparquet"), FastParquetImpl)
with pd.option_context("io.parquet.engine", "fastparquet"):
assert isinstance(get_engine("auto"), FastParquetImpl)
assert isinstance(get_engine("pyarrow"), PyArrowImpl)
assert isinstance(get_engine("fastparquet"), FastParquetImpl)
with pd.option_context("io.parquet.engine", "auto"):
assert isinstance(get_engine("auto"), PyArrowImpl)
assert isinstance(get_engine("pyarrow"), PyArrowImpl)
assert isinstance(get_engine("fastparquet"), FastParquetImpl)
def test_get_engine_auto_error_message():
# Expect different error messages from get_engine(engine="auto")
# if engines aren't installed vs. are installed but bad version
from pandas.compat._optional import VERSIONS
# Do we have engines installed, but a bad version of them?
pa_min_ver = VERSIONS.get("pyarrow")
fp_min_ver = VERSIONS.get("fastparquet")
have_pa_bad_version = (
False
if not _HAVE_PYARROW
else Version(pyarrow.__version__) < Version(pa_min_ver)
)
have_fp_bad_version = (
False
if not _HAVE_FASTPARQUET
else Version(fastparquet.__version__) < Version(fp_min_ver)
)
# Do we have usable engines installed?
have_usable_pa = _HAVE_PYARROW and not have_pa_bad_version
have_usable_fp = _HAVE_FASTPARQUET and not have_fp_bad_version
if not have_usable_pa and not have_usable_fp:
# No usable engines found.
if have_pa_bad_version:
match = f"Pandas requires version .{pa_min_ver}. or newer of .pyarrow."
with pytest.raises(ImportError, match=match):
get_engine("auto")
else:
match = "Missing optional dependency .pyarrow."
with pytest.raises(ImportError, match=match):
get_engine("auto")
if have_fp_bad_version:
match = f"Pandas requires version .{fp_min_ver}. or newer of .fastparquet."
with pytest.raises(ImportError, match=match):
get_engine("auto")
else:
match = "Missing optional dependency .fastparquet."
with pytest.raises(ImportError, match=match):
get_engine("auto")
def test_cross_engine_pa_fp(df_cross_compat, pa, fp):
# cross-compat with differing reading/writing engines
df = df_cross_compat
with tm.ensure_clean() as path:
df.to_parquet(path, engine=pa, compression=None)
result = read_parquet(path, engine=fp)
tm.assert_frame_equal(result, df)
result = read_parquet(path, engine=fp, columns=["a", "d"])
tm.assert_frame_equal(result, df[["a", "d"]])
def test_cross_engine_fp_pa(df_cross_compat, pa, fp):
# cross-compat with differing reading/writing engines
df = df_cross_compat
with tm.ensure_clean() as path:
df.to_parquet(path, engine=fp, compression=None)
result = read_parquet(path, engine=pa)
tm.assert_frame_equal(result, df)
result = read_parquet(path, engine=pa, columns=["a", "d"])
tm.assert_frame_equal(result, df[["a", "d"]])
def test_parquet_pos_args_deprecation(engine):
# GH-54229
df = pd.DataFrame({"a": [1, 2, 3]})
msg = (
r"Starting with pandas version 3.0 all arguments of to_parquet except for the "
r"argument 'path' will be keyword-only."
)
with tm.ensure_clean() as path:
with tm.assert_produces_warning(
FutureWarning,
match=msg,
check_stacklevel=False,
raise_on_extra_warnings=False,
):
df.to_parquet(path, engine)
class Base:
def check_error_on_write(self, df, engine, exc, err_msg):
# check that we are raising the exception on writing
with tm.ensure_clean() as path:
with pytest.raises(exc, match=err_msg):
to_parquet(df, path, engine, compression=None)
def check_external_error_on_write(self, df, engine, exc):
# check that an external library is raising the exception on writing
with tm.ensure_clean() as path:
with tm.external_error_raised(exc):
to_parquet(df, path, engine, compression=None)
@pytest.mark.network
@pytest.mark.single_cpu
def test_parquet_read_from_url(self, httpserver, datapath, df_compat, engine):
if engine != "auto":
pytest.importorskip(engine)
with open(datapath("io", "data", "parquet", "simple.parquet"), mode="rb") as f:
httpserver.serve_content(content=f.read())
df = read_parquet(httpserver.url)
tm.assert_frame_equal(df, df_compat)
class TestBasic(Base):
def test_error(self, engine):
for obj in [
pd.Series([1, 2, 3]),
1,
"foo",
pd.Timestamp("20130101"),
np.array([1, 2, 3]),
]:
msg = "to_parquet only supports IO with DataFrames"
self.check_error_on_write(obj, engine, ValueError, msg)
def test_columns_dtypes(self, engine):
df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
# unicode
df.columns = ["foo", "bar"]
check_round_trip(df, engine)
@pytest.mark.parametrize("compression", [None, "gzip", "snappy", "brotli"])
def test_compression(self, engine, compression):
df = pd.DataFrame({"A": [1, 2, 3]})
check_round_trip(df, engine, write_kwargs={"compression": compression})
def test_read_columns(self, engine):
# GH18154
df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
expected = pd.DataFrame({"string": list("abc")})
check_round_trip(
df, engine, expected=expected, read_kwargs={"columns": ["string"]}
)
def test_read_filters(self, engine, tmp_path):
df = pd.DataFrame(
{
"int": list(range(4)),
"part": list("aabb"),
}
)
expected = pd.DataFrame({"int": [0, 1]})
check_round_trip(
df,
engine,
path=tmp_path,
expected=expected,
write_kwargs={"partition_cols": ["part"]},
read_kwargs={"filters": [("part", "==", "a")], "columns": ["int"]},
repeat=1,
)
def test_write_index(self, engine, using_copy_on_write, request):
check_names = engine != "fastparquet"
if using_copy_on_write and engine == "fastparquet":
request.applymarker(
pytest.mark.xfail(reason="fastparquet write into index")
)
df = pd.DataFrame({"A": [1, 2, 3]})
check_round_trip(df, engine)
indexes = [
[2, 3, 4],
pd.date_range("20130101", periods=3),
list("abc"),
[1, 3, 4],
]
# non-default index
for index in indexes:
df.index = index
if isinstance(index, pd.DatetimeIndex):
df.index = df.index._with_freq(None) # freq doesn't round-trip
check_round_trip(df, engine, check_names=check_names)
# index with meta-data
df.index = [0, 1, 2]
df.index.name = "foo"
check_round_trip(df, engine)
def test_write_multiindex(self, pa):
# Not supported in fastparquet as of 0.1.3 or older pyarrow version
engine = pa
df = pd.DataFrame({"A": [1, 2, 3]})
index = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)])
df.index = index
check_round_trip(df, engine)
def test_multiindex_with_columns(self, pa):
engine = pa
dates = pd.date_range("01-Jan-2018", "01-Dec-2018", freq="MS")
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((2 * len(dates), 3)),
columns=list("ABC"),
)
index1 = pd.MultiIndex.from_product(
[["Level1", "Level2"], dates], names=["level", "date"]
)
index2 = index1.copy(names=None)
for index in [index1, index2]:
df.index = index
check_round_trip(df, engine)
check_round_trip(
df, engine, read_kwargs={"columns": ["A", "B"]}, expected=df[["A", "B"]]
)
def test_write_ignoring_index(self, engine):
# ENH 20768
# Ensure index=False omits the index from the written Parquet file.
df = pd.DataFrame({"a": [1, 2, 3], "b": ["q", "r", "s"]})
write_kwargs = {"compression": None, "index": False}
# Because we're dropping the index, we expect the loaded dataframe to
# have the default integer index.
expected = df.reset_index(drop=True)
check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected)
# Ignore custom index
df = pd.DataFrame(
{"a": [1, 2, 3], "b": ["q", "r", "s"]}, index=["zyx", "wvu", "tsr"]
)
check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected)
# Ignore multi-indexes as well.
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
df = pd.DataFrame(
{"one": list(range(8)), "two": [-i for i in range(8)]}, index=arrays
)
expected = df.reset_index(drop=True)
check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected)
def test_write_column_multiindex(self, engine):
# Not able to write column multi-indexes with non-string column names.
mi_columns = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)])
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((4, 3)), columns=mi_columns
)
if engine == "fastparquet":
self.check_error_on_write(
df, engine, TypeError, "Column name must be a string"
)
elif engine == "pyarrow":
check_round_trip(df, engine)
def test_write_column_multiindex_nonstring(self, engine):
# GH #34777
# Not able to write column multi-indexes with non-string column names
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
[1, 2, 1, 2, 1, 2, 1, 2],
]
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((8, 8)), columns=arrays
)
df.columns.names = ["Level1", "Level2"]
if engine == "fastparquet":
self.check_error_on_write(df, engine, ValueError, "Column name")
elif engine == "pyarrow":
check_round_trip(df, engine)
def test_write_column_multiindex_string(self, pa):
# GH #34777
# Not supported in fastparquet as of 0.1.3
engine = pa
# Write column multi-indexes with string column names
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((8, 8)), columns=arrays
)
df.columns.names = ["ColLevel1", "ColLevel2"]
check_round_trip(df, engine)
def test_write_column_index_string(self, pa):
# GH #34777
# Not supported in fastparquet as of 0.1.3
engine = pa
# Write column indexes with string column names
arrays = ["bar", "baz", "foo", "qux"]
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((8, 4)), columns=arrays
)
df.columns.name = "StringCol"
check_round_trip(df, engine)
def test_write_column_index_nonstring(self, engine):
# GH #34777
# Write column indexes with string column names
arrays = [1, 2, 3, 4]
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((8, 4)), columns=arrays
)
df.columns.name = "NonStringCol"
if engine == "fastparquet":
self.check_error_on_write(
df, engine, TypeError, "Column name must be a string"
)
else:
check_round_trip(df, engine)
def test_dtype_backend(self, engine, request):
pq = pytest.importorskip("pyarrow.parquet")
if engine == "fastparquet":
# We are manually disabling fastparquet's
# nullable dtype support pending discussion
mark = pytest.mark.xfail(
reason="Fastparquet nullable dtype support is disabled"
)
request.applymarker(mark)
table = pyarrow.table(
{
"a": pyarrow.array([1, 2, 3, None], "int64"),
"b": pyarrow.array([1, 2, 3, None], "uint8"),
"c": pyarrow.array(["a", "b", "c", None]),
"d": pyarrow.array([True, False, True, None]),
# Test that nullable dtypes used even in absence of nulls
"e": pyarrow.array([1, 2, 3, 4], "int64"),
# GH 45694
"f": pyarrow.array([1.0, 2.0, 3.0, None], "float32"),
"g": pyarrow.array([1.0, 2.0, 3.0, None], "float64"),
}
)
with tm.ensure_clean() as path:
# write manually with pyarrow to write integers
pq.write_table(table, path)
result1 = read_parquet(path, engine=engine)
result2 = read_parquet(path, engine=engine, dtype_backend="numpy_nullable")
assert result1["a"].dtype == np.dtype("float64")
expected = pd.DataFrame(
{
"a": pd.array([1, 2, 3, None], dtype="Int64"),
"b": pd.array([1, 2, 3, None], dtype="UInt8"),
"c": pd.array(["a", "b", "c", None], dtype="string"),
"d": pd.array([True, False, True, None], dtype="boolean"),
"e": pd.array([1, 2, 3, 4], dtype="Int64"),
"f": pd.array([1.0, 2.0, 3.0, None], dtype="Float32"),
"g": pd.array([1.0, 2.0, 3.0, None], dtype="Float64"),
}
)
if engine == "fastparquet":
# Fastparquet doesn't support string columns yet
# Only int and boolean
result2 = result2.drop("c", axis=1)
expected = expected.drop("c", axis=1)
tm.assert_frame_equal(result2, expected)
@pytest.mark.parametrize(
"dtype",
[
"Int64",
"UInt8",
"boolean",
"object",
"datetime64[ns, UTC]",
"float",
"period[D]",
"Float64",
"string",
],
)
def test_read_empty_array(self, pa, dtype):
# GH #41241
df = pd.DataFrame(
{
"value": pd.array([], dtype=dtype),
}
)
# GH 45694
expected = None
if dtype == "float":
expected = pd.DataFrame(
{
"value": pd.array([], dtype="Float64"),
}
)
check_round_trip(
df, pa, read_kwargs={"dtype_backend": "numpy_nullable"}, expected=expected
)
class TestParquetPyArrow(Base):
def test_basic(self, pa, df_full):
df = df_full
# additional supported types for pyarrow
dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels")
dti = dti._with_freq(None) # freq doesn't round-trip
df["datetime_tz"] = dti
df["bool_with_none"] = [True, None, True]
check_round_trip(df, pa)
def test_basic_subset_columns(self, pa, df_full):
# GH18628
df = df_full
# additional supported types for pyarrow
df["datetime_tz"] = pd.date_range("20130101", periods=3, tz="Europe/Brussels")
check_round_trip(
df,
pa,
expected=df[["string", "int"]],
read_kwargs={"columns": ["string", "int"]},
)
def test_to_bytes_without_path_or_buf_provided(self, pa, df_full):
# GH 37105
buf_bytes = df_full.to_parquet(engine=pa)
assert isinstance(buf_bytes, bytes)
buf_stream = BytesIO(buf_bytes)
res = read_parquet(buf_stream)
expected = df_full.copy()
expected.loc[1, "string_with_nan"] = None
tm.assert_frame_equal(res, expected)
def test_duplicate_columns(self, pa):
# not currently able to handle duplicate columns
df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
self.check_error_on_write(df, pa, ValueError, "Duplicate column names found")
def test_timedelta(self, pa):
df = pd.DataFrame({"a": pd.timedelta_range("1 day", periods=3)})
check_round_trip(df, pa)
def test_unsupported(self, pa):
# mixed python objects
df = pd.DataFrame({"a": ["a", 1, 2.0]})
# pyarrow 0.11 raises ArrowTypeError
# older pyarrows raise ArrowInvalid
self.check_external_error_on_write(df, pa, pyarrow.ArrowException)
def test_unsupported_float16(self, pa):
# #44847, #44914
# Not able to write float 16 column using pyarrow.
data = np.arange(2, 10, dtype=np.float16)
df = pd.DataFrame(data=data, columns=["fp16"])
if pa_version_under15p0:
self.check_external_error_on_write(df, pa, pyarrow.ArrowException)
else:
check_round_trip(df, pa)
@pytest.mark.xfail(
is_platform_windows(),
reason=(
"PyArrow does not cleanup of partial files dumps when unsupported "
"dtypes are passed to_parquet function in windows"
),
)
@pytest.mark.skipif(not pa_version_under15p0, reason="float16 works on 15")
@pytest.mark.parametrize("path_type", [str, pathlib.Path])
def test_unsupported_float16_cleanup(self, pa, path_type):
# #44847, #44914
# Not able to write float 16 column using pyarrow.
# Tests cleanup by pyarrow in case of an error
data = np.arange(2, 10, dtype=np.float16)
df = pd.DataFrame(data=data, columns=["fp16"])
with tm.ensure_clean() as path_str:
path = path_type(path_str)
with tm.external_error_raised(pyarrow.ArrowException):
df.to_parquet(path=path, engine=pa)
assert not os.path.isfile(path)
def test_categorical(self, pa):
# supported in >= 0.7.0
df = pd.DataFrame()
df["a"] = pd.Categorical(list("abcdef"))
# test for null, out-of-order values, and unobserved category
df["b"] = pd.Categorical(
["bar", "foo", "foo", "bar", None, "bar"],
dtype=pd.CategoricalDtype(["foo", "bar", "baz"]),
)
# test for ordered flag
df["c"] = pd.Categorical(
["a", "b", "c", "a", "c", "b"], categories=["b", "c", "d"], ordered=True
)
check_round_trip(df, pa)
@pytest.mark.single_cpu
def test_s3_roundtrip_explicit_fs(self, df_compat, s3_public_bucket, pa, s3so):
s3fs = pytest.importorskip("s3fs")
s3 = s3fs.S3FileSystem(**s3so)
kw = {"filesystem": s3}
check_round_trip(
df_compat,
pa,
path=f"{s3_public_bucket.name}/pyarrow.parquet",
read_kwargs=kw,
write_kwargs=kw,
)
@pytest.mark.single_cpu
def test_s3_roundtrip(self, df_compat, s3_public_bucket, pa, s3so):
# GH #19134
s3so = {"storage_options": s3so}
check_round_trip(
df_compat,
pa,
path=f"s3://{s3_public_bucket.name}/pyarrow.parquet",
read_kwargs=s3so,
write_kwargs=s3so,
)
@pytest.mark.single_cpu
@pytest.mark.parametrize(
"partition_col",
[
["A"],
[],
],
)
def test_s3_roundtrip_for_dir(
self, df_compat, s3_public_bucket, pa, partition_col, s3so
):
pytest.importorskip("s3fs")
# GH #26388
expected_df = df_compat.copy()
# GH #35791
if partition_col:
expected_df = expected_df.astype(dict.fromkeys(partition_col, np.int32))
partition_col_type = "category"
expected_df[partition_col] = expected_df[partition_col].astype(
partition_col_type
)
check_round_trip(
df_compat,
pa,
expected=expected_df,
path=f"s3://{s3_public_bucket.name}/parquet_dir",
read_kwargs={"storage_options": s3so},
write_kwargs={
"partition_cols": partition_col,
"compression": None,
"storage_options": s3so,
},
check_like=True,
repeat=1,
)
def test_read_file_like_obj_support(self, df_compat):
pytest.importorskip("pyarrow")
buffer = BytesIO()
df_compat.to_parquet(buffer)
df_from_buf = read_parquet(buffer)
tm.assert_frame_equal(df_compat, df_from_buf)
def test_expand_user(self, df_compat, monkeypatch):
pytest.importorskip("pyarrow")
monkeypatch.setenv("HOME", "TestingUser")
monkeypatch.setenv("USERPROFILE", "TestingUser")
with pytest.raises(OSError, match=r".*TestingUser.*"):
read_parquet("~/file.parquet")
with pytest.raises(OSError, match=r".*TestingUser.*"):
df_compat.to_parquet("~/file.parquet")
def test_partition_cols_supported(self, tmp_path, pa, df_full):
# GH #23283
partition_cols = ["bool", "int"]
df = df_full
df.to_parquet(tmp_path, partition_cols=partition_cols, compression=None)
check_partition_names(tmp_path, partition_cols)
assert read_parquet(tmp_path).shape == df.shape
def test_partition_cols_string(self, tmp_path, pa, df_full):
# GH #27117
partition_cols = "bool"
partition_cols_list = [partition_cols]
df = df_full
df.to_parquet(tmp_path, partition_cols=partition_cols, compression=None)
check_partition_names(tmp_path, partition_cols_list)
assert read_parquet(tmp_path).shape == df.shape
@pytest.mark.parametrize(
"path_type", [str, lambda x: x], ids=["string", "pathlib.Path"]
)
def test_partition_cols_pathlib(self, tmp_path, pa, df_compat, path_type):
# GH 35902
partition_cols = "B"
partition_cols_list = [partition_cols]
df = df_compat
path = path_type(tmp_path)
df.to_parquet(path, partition_cols=partition_cols_list)
assert read_parquet(path).shape == df.shape
def test_empty_dataframe(self, pa):
# GH #27339
df = pd.DataFrame(index=[], columns=[])
check_round_trip(df, pa)
def test_write_with_schema(self, pa):
import pyarrow
df = pd.DataFrame({"x": [0, 1]})
schema = pyarrow.schema([pyarrow.field("x", type=pyarrow.bool_())])
out_df = df.astype(bool)
check_round_trip(df, pa, write_kwargs={"schema": schema}, expected=out_df)
def test_additional_extension_arrays(self, pa):
# test additional ExtensionArrays that are supported through the
# __arrow_array__ protocol
pytest.importorskip("pyarrow")
df = pd.DataFrame(
{
"a": pd.Series([1, 2, 3], dtype="Int64"),
"b": pd.Series([1, 2, 3], dtype="UInt32"),
"c": pd.Series(["a", None, "c"], dtype="string"),
}
)
check_round_trip(df, pa)
df = pd.DataFrame({"a": pd.Series([1, 2, 3, None], dtype="Int64")})
check_round_trip(df, pa)
def test_pyarrow_backed_string_array(self, pa, string_storage):
# test ArrowStringArray supported through the __arrow_array__ protocol
pytest.importorskip("pyarrow")
df = pd.DataFrame({"a": pd.Series(["a", None, "c"], dtype="string[pyarrow]")})
with pd.option_context("string_storage", string_storage):
check_round_trip(df, pa, expected=df.astype(f"string[{string_storage}]"))
def test_additional_extension_types(self, pa):
# test additional ExtensionArrays that are supported through the
# __arrow_array__ protocol + by defining a custom ExtensionType
pytest.importorskip("pyarrow")
df = pd.DataFrame(
{
"c": pd.IntervalIndex.from_tuples([(0, 1), (1, 2), (3, 4)]),
"d": pd.period_range("2012-01-01", periods=3, freq="D"),
# GH-45881 issue with interval with datetime64[ns] subtype
"e": pd.IntervalIndex.from_breaks(
pd.date_range("2012-01-01", periods=4, freq="D")
),
}
)
check_round_trip(df, pa)
def test_timestamp_nanoseconds(self, pa):
# with version 2.6, pyarrow defaults to writing the nanoseconds, so
# this should work without error
# Note in previous pyarrows(<7.0.0), only the pseudo-version 2.0 was available
ver = "2.6"
df = pd.DataFrame({"a": pd.date_range("2017-01-01", freq="1ns", periods=10)})
check_round_trip(df, pa, write_kwargs={"version": ver})
def test_timezone_aware_index(self, request, pa, timezone_aware_date_list):
if timezone_aware_date_list.tzinfo != datetime.timezone.utc:
request.applymarker(
pytest.mark.xfail(
reason="temporary skip this test until it is properly resolved: "
"https://github.com/pandas-dev/pandas/issues/37286"
)
)
idx = 5 * [timezone_aware_date_list]
df = pd.DataFrame(index=idx, data={"index_as_col": idx})
# see gh-36004
# compare time(zone) values only, skip their class:
# pyarrow always creates fixed offset timezones using pytz.FixedOffset()
# even if it was datetime.timezone() originally
#
# technically they are the same:
# they both implement datetime.tzinfo
# they both wrap datetime.timedelta()
# this use-case sets the resolution to 1 minute
check_round_trip(df, pa, check_dtype=False)
def test_filter_row_groups(self, pa):
# https://github.com/pandas-dev/pandas/issues/26551
pytest.importorskip("pyarrow")
df = pd.DataFrame({"a": list(range(3))})
with tm.ensure_clean() as path:
df.to_parquet(path, engine=pa)
result = read_parquet(path, pa, filters=[("a", "==", 0)])
assert len(result) == 1
def test_read_parquet_manager(self, pa, using_array_manager):
# ensure that read_parquet honors the pandas.options.mode.data_manager option
df = pd.DataFrame(
np.random.default_rng(2).standard_normal((10, 3)), columns=["A", "B", "C"]
)
with tm.ensure_clean() as path:
df.to_parquet(path, engine=pa)
result = read_parquet(path, pa)
if using_array_manager:
assert isinstance(result._mgr, pd.core.internals.ArrayManager)
else:
assert isinstance(result._mgr, pd.core.internals.BlockManager)
def test_read_dtype_backend_pyarrow_config(self, pa, df_full):
import pyarrow
df = df_full
# additional supported types for pyarrow
dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels")
dti = dti._with_freq(None) # freq doesn't round-trip
df["datetime_tz"] = dti
df["bool_with_none"] = [True, None, True]
pa_table = pyarrow.Table.from_pandas(df)
expected = pa_table.to_pandas(types_mapper=pd.ArrowDtype)
if pa_version_under13p0:
# pyarrow infers datetimes as us instead of ns
expected["datetime"] = expected["datetime"].astype("timestamp[us][pyarrow]")
expected["datetime_with_nat"] = expected["datetime_with_nat"].astype(
"timestamp[us][pyarrow]"
)
expected["datetime_tz"] = expected["datetime_tz"].astype(
pd.ArrowDtype(pyarrow.timestamp(unit="us", tz="Europe/Brussels"))
)
check_round_trip(
df,
engine=pa,
read_kwargs={"dtype_backend": "pyarrow"},
expected=expected,
)
def test_read_dtype_backend_pyarrow_config_index(self, pa):
df = pd.DataFrame(
{"a": [1, 2]}, index=pd.Index([3, 4], name="test"), dtype="int64[pyarrow]"
)
expected = df.copy()
import pyarrow
if Version(pyarrow.__version__) > Version("11.0.0"):
expected.index = expected.index.astype("int64[pyarrow]")
check_round_trip(
df,
engine=pa,
read_kwargs={"dtype_backend": "pyarrow"},
expected=expected,
)
def test_columns_dtypes_not_invalid(self, pa):
df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
# numeric
df.columns = [0, 1]
check_round_trip(df, pa)
# bytes
df.columns = [b"foo", b"bar"]
with pytest.raises(NotImplementedError, match="|S3"):
# Bytes fails on read_parquet
check_round_trip(df, pa)
# python object
df.columns = [
datetime.datetime(2011, 1, 1, 0, 0),
datetime.datetime(2011, 1, 1, 1, 1),
]
check_round_trip(df, pa)
def test_empty_columns(self, pa):
# GH 52034
df = pd.DataFrame(index=pd.Index(["a", "b", "c"], name="custom name"))
check_round_trip(df, pa)
def test_df_attrs_persistence(self, tmp_path, pa):
path = tmp_path / "test_df_metadata.p"
df = pd.DataFrame(data={1: [1]})
df.attrs = {"test_attribute": 1}
df.to_parquet(path, engine=pa)
new_df = read_parquet(path, engine=pa)
assert new_df.attrs == df.attrs
def test_string_inference(self, tmp_path, pa):
# GH#54431
path = tmp_path / "test_string_inference.p"
df = pd.DataFrame(data={"a": ["x", "y"]}, index=["a", "b"])
df.to_parquet(path, engine="pyarrow")
with pd.option_context("future.infer_string", True):
result = read_parquet(path, engine="pyarrow")
expected = pd.DataFrame(
data={"a": ["x", "y"]},
dtype="string[pyarrow_numpy]",
index=pd.Index(["a", "b"], dtype="string[pyarrow_numpy]"),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.skipif(pa_version_under11p0, reason="not supported before 11.0")
def test_roundtrip_decimal(self, tmp_path, pa):
# GH#54768
import pyarrow as pa
path = tmp_path / "decimal.p"
df = pd.DataFrame({"a": [Decimal("123.00")]}, dtype="string[pyarrow]")
df.to_parquet(path, schema=pa.schema([("a", pa.decimal128(5))]))
result = read_parquet(path)
expected = pd.DataFrame({"a": ["123"]}, dtype="string[python]")
tm.assert_frame_equal(result, expected)
def test_infer_string_large_string_type(self, tmp_path, pa):
# GH#54798
import pyarrow as pa
import pyarrow.parquet as pq
path = tmp_path / "large_string.p"
table = pa.table({"a": pa.array([None, "b", "c"], pa.large_string())})
pq.write_table(table, path)
with pd.option_context("future.infer_string", True):
result = read_parquet(path)
expected = pd.DataFrame(
data={"a": [None, "b", "c"]},
dtype="string[pyarrow_numpy]",
columns=pd.Index(["a"], dtype="string[pyarrow_numpy]"),
)
tm.assert_frame_equal(result, expected)
# NOTE: this test is not run by default, because it requires a lot of memory (>5GB)
# @pytest.mark.slow
# def test_string_column_above_2GB(self, tmp_path, pa):
# # https://github.com/pandas-dev/pandas/issues/55606
# # above 2GB of string data
# v1 = b"x" * 100000000
# v2 = b"x" * 147483646
# df = pd.DataFrame({"strings": [v1] * 20 + [v2] + ["x"] * 20}, dtype="string")
# df.to_parquet(tmp_path / "test.parquet")
# result = read_parquet(tmp_path / "test.parquet")
# assert result["strings"].dtype == "string"
class TestParquetFastParquet(Base):
def test_basic(self, fp, df_full):
df = df_full
dti = pd.date_range("20130101", periods=3, tz="US/Eastern")
dti = dti._with_freq(None) # freq doesn't round-trip
df["datetime_tz"] = dti
df["timedelta"] = pd.timedelta_range("1 day", periods=3)
check_round_trip(df, fp)
def test_columns_dtypes_invalid(self, fp):
df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))})
err = TypeError
msg = "Column name must be a string"
# numeric
df.columns = [0, 1]
self.check_error_on_write(df, fp, err, msg)
# bytes
df.columns = [b"foo", b"bar"]
self.check_error_on_write(df, fp, err, msg)
# python object
df.columns = [
datetime.datetime(2011, 1, 1, 0, 0),
datetime.datetime(2011, 1, 1, 1, 1),
]
self.check_error_on_write(df, fp, err, msg)
def test_duplicate_columns(self, fp):
# not currently able to handle duplicate columns
df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
msg = "Cannot create parquet dataset with duplicate column names"
self.check_error_on_write(df, fp, ValueError, msg)
def test_bool_with_none(self, fp):
df = pd.DataFrame({"a": [True, None, False]})
expected = pd.DataFrame({"a": [1.0, np.nan, 0.0]}, dtype="float16")
# Fastparquet bug in 0.7.1 makes it so that this dtype becomes
# float64
check_round_trip(df, fp, expected=expected, check_dtype=False)
def test_unsupported(self, fp):
# period
df = pd.DataFrame({"a": pd.period_range("2013", freq="M", periods=3)})
# error from fastparquet -> don't check exact error message
self.check_error_on_write(df, fp, ValueError, None)
# mixed
df = pd.DataFrame({"a": ["a", 1, 2.0]})
msg = "Can't infer object conversion type"
self.check_error_on_write(df, fp, ValueError, msg)
def test_categorical(self, fp):
df = pd.DataFrame({"a": pd.Categorical(list("abc"))})
check_round_trip(df, fp)
def test_filter_row_groups(self, fp):
d = {"a": list(range(3))}
df = pd.DataFrame(d)
with tm.ensure_clean() as path:
df.to_parquet(path, engine=fp, compression=None, row_group_offsets=1)
result = read_parquet(path, fp, filters=[("a", "==", 0)])
assert len(result) == 1
@pytest.mark.single_cpu
def test_s3_roundtrip(self, df_compat, s3_public_bucket, fp, s3so):
# GH #19134
check_round_trip(
df_compat,
fp,
path=f"s3://{s3_public_bucket.name}/fastparquet.parquet",
read_kwargs={"storage_options": s3so},
write_kwargs={"compression": None, "storage_options": s3so},
)
def test_partition_cols_supported(self, tmp_path, fp, df_full):
# GH #23283
partition_cols = ["bool", "int"]
df = df_full
df.to_parquet(
tmp_path,
engine="fastparquet",
partition_cols=partition_cols,
compression=None,
)
assert os.path.exists(tmp_path)
import fastparquet
actual_partition_cols = fastparquet.ParquetFile(str(tmp_path), False).cats
assert len(actual_partition_cols) == 2
def test_partition_cols_string(self, tmp_path, fp, df_full):
# GH #27117
partition_cols = "bool"
df = df_full
df.to_parquet(
tmp_path,
engine="fastparquet",
partition_cols=partition_cols,
compression=None,
)
assert os.path.exists(tmp_path)
import fastparquet
actual_partition_cols = fastparquet.ParquetFile(str(tmp_path), False).cats
assert len(actual_partition_cols) == 1
def test_partition_on_supported(self, tmp_path, fp, df_full):
# GH #23283
partition_cols = ["bool", "int"]
df = df_full
df.to_parquet(
tmp_path,
engine="fastparquet",
compression=None,
partition_on=partition_cols,
)
assert os.path.exists(tmp_path)
import fastparquet
actual_partition_cols = fastparquet.ParquetFile(str(tmp_path), False).cats
assert len(actual_partition_cols) == 2
def test_error_on_using_partition_cols_and_partition_on(
self, tmp_path, fp, df_full
):
# GH #23283
partition_cols = ["bool", "int"]
df = df_full
msg = (
"Cannot use both partition_on and partition_cols. Use partition_cols for "
"partitioning data"
)
with pytest.raises(ValueError, match=msg):
df.to_parquet(
tmp_path,
engine="fastparquet",
compression=None,
partition_on=partition_cols,
partition_cols=partition_cols,
)
@pytest.mark.skipif(using_copy_on_write(), reason="fastparquet writes into Index")
def test_empty_dataframe(self, fp):
# GH #27339
df = pd.DataFrame()
expected = df.copy()
check_round_trip(df, fp, expected=expected)
@pytest.mark.skipif(using_copy_on_write(), reason="fastparquet writes into Index")
def test_timezone_aware_index(self, fp, timezone_aware_date_list):
idx = 5 * [timezone_aware_date_list]
df = pd.DataFrame(index=idx, data={"index_as_col": idx})
expected = df.copy()
expected.index.name = "index"
check_round_trip(df, fp, expected=expected)
def test_use_nullable_dtypes_not_supported(self, fp):
df = pd.DataFrame({"a": [1, 2]})
with tm.ensure_clean() as path:
df.to_parquet(path)
with pytest.raises(ValueError, match="not supported for the fastparquet"):
with tm.assert_produces_warning(FutureWarning):
read_parquet(path, engine="fastparquet", use_nullable_dtypes=True)
with pytest.raises(ValueError, match="not supported for the fastparquet"):
read_parquet(path, engine="fastparquet", dtype_backend="pyarrow")
def test_close_file_handle_on_read_error(self):
with tm.ensure_clean("test.parquet") as path:
pathlib.Path(path).write_bytes(b"breakit")
with pytest.raises(Exception, match=""): # Not important which exception
read_parquet(path, engine="fastparquet")
# The next line raises an error on Windows if the file is still open
pathlib.Path(path).unlink(missing_ok=False)
def test_bytes_file_name(self, engine):
# GH#48944
df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
with tm.ensure_clean("test.parquet") as path:
with open(path.encode(), "wb") as f:
df.to_parquet(f)
result = read_parquet(path, engine=engine)
tm.assert_frame_equal(result, df)
def test_filesystem_notimplemented(self):
pytest.importorskip("fastparquet")
df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
with tm.ensure_clean() as path:
with pytest.raises(
NotImplementedError, match="filesystem is not implemented"
):
df.to_parquet(path, engine="fastparquet", filesystem="foo")
with tm.ensure_clean() as path:
pathlib.Path(path).write_bytes(b"foo")
with pytest.raises(
NotImplementedError, match="filesystem is not implemented"
):
read_parquet(path, engine="fastparquet", filesystem="foo")
def test_invalid_filesystem(self):
pytest.importorskip("pyarrow")
df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
with tm.ensure_clean() as path:
with pytest.raises(
ValueError, match="filesystem must be a pyarrow or fsspec FileSystem"
):
df.to_parquet(path, engine="pyarrow", filesystem="foo")
with tm.ensure_clean() as path:
pathlib.Path(path).write_bytes(b"foo")
with pytest.raises(
ValueError, match="filesystem must be a pyarrow or fsspec FileSystem"
):
read_parquet(path, engine="pyarrow", filesystem="foo")
def test_unsupported_pa_filesystem_storage_options(self):
pa_fs = pytest.importorskip("pyarrow.fs")
df = pd.DataFrame(data={"A": [0, 1], "B": [1, 0]})
with tm.ensure_clean() as path:
with pytest.raises(
NotImplementedError,
match="storage_options not supported with a pyarrow FileSystem.",
):
df.to_parquet(
path,
engine="pyarrow",
filesystem=pa_fs.LocalFileSystem(),
storage_options={"foo": "bar"},
)
with tm.ensure_clean() as path:
pathlib.Path(path).write_bytes(b"foo")
with pytest.raises(
NotImplementedError,
match="storage_options not supported with a pyarrow FileSystem.",
):
read_parquet(
path,
engine="pyarrow",
filesystem=pa_fs.LocalFileSystem(),
storage_options={"foo": "bar"},
)
def test_invalid_dtype_backend(self, engine):
msg = (
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
"'pyarrow' are allowed."
)
df = pd.DataFrame({"int": list(range(1, 4))})
with tm.ensure_clean("tmp.parquet") as path:
df.to_parquet(path)
with pytest.raises(ValueError, match=msg):
read_parquet(path, dtype_backend="numpy")
@pytest.mark.skipif(using_copy_on_write(), reason="fastparquet writes into Index")
def test_empty_columns(self, fp):
# GH 52034
df = pd.DataFrame(index=pd.Index(["a", "b", "c"], name="custom name"))
expected = pd.DataFrame(index=pd.Index(["a", "b", "c"], name="custom name"))
check_round_trip(df, fp, expected=expected)