Traktor/myenv/Lib/site-packages/pandas/tests/io/test_spss.py
2024-05-23 01:57:24 +02:00

165 lines
6.2 KiB
Python

import datetime
from pathlib import Path
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.util.version import Version
pyreadstat = pytest.importorskip("pyreadstat")
# TODO(CoW) - detection of chained assignment in cython
# https://github.com/pandas-dev/pandas/issues/51315
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
@pytest.mark.parametrize("path_klass", [lambda p: p, Path])
def test_spss_labelled_num(path_klass, datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
tm.assert_frame_equal(df, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_labelled_num_na(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "labelled-num-na.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": ["This is one", None]})
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
tm.assert_frame_equal(df, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_labelled_str(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "labelled-str.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"gender": ["Male", "Female"]})
expected["gender"] = pd.Categorical(expected["gender"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"gender": ["M", "F"]})
tm.assert_frame_equal(df, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_umlauts(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "umlauts.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame(
{"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
)
expected["var1"] = pd.Categorical(expected["var1"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
tm.assert_frame_equal(df, expected)
def test_spss_usecols(datapath):
# usecols must be list-like
fname = datapath("io", "data", "spss", "labelled-num.sav")
with pytest.raises(TypeError, match="usecols must be list-like."):
pd.read_spss(fname, usecols="VAR00002")
def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "umlauts.sav")
df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")
if dtype_backend == "pyarrow":
pa = pytest.importorskip("pyarrow")
from pandas.arrays import ArrowExtensionArray
expected = pd.DataFrame(
{
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
for col in expected.columns
}
)
tm.assert_frame_equal(df, expected)
def test_invalid_dtype_backend():
msg = (
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
"'pyarrow' are allowed."
)
with pytest.raises(ValueError, match=msg):
pd.read_spss("test", dtype_backend="numpy")
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_metadata(datapath):
# GH 54264
fname = datapath("io", "data", "spss", "labelled-num.sav")
df = pd.read_spss(fname)
metadata = {
"column_names": ["VAR00002"],
"column_labels": [None],
"column_names_to_labels": {"VAR00002": None},
"file_encoding": "UTF-8",
"number_columns": 1,
"number_rows": 1,
"variable_value_labels": {"VAR00002": {1.0: "This is one"}},
"value_labels": {"labels0": {1.0: "This is one"}},
"variable_to_label": {"VAR00002": "labels0"},
"notes": [],
"original_variable_types": {"VAR00002": "F8.0"},
"readstat_variable_types": {"VAR00002": "double"},
"table_name": None,
"missing_ranges": {},
"missing_user_values": {},
"variable_storage_width": {"VAR00002": 8},
"variable_display_width": {"VAR00002": 8},
"variable_alignment": {"VAR00002": "unknown"},
"variable_measure": {"VAR00002": "unknown"},
"file_label": None,
"file_format": "sav/zsav",
}
if Version(pyreadstat.__version__) >= Version("1.2.4"):
metadata.update(
{
"creation_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
"modification_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
}
)
assert df.attrs == metadata