47 lines
1.1 KiB
Python
47 lines
1.1 KiB
Python
"""
|
|
Tests for np.foo applied to Series, not necessarily ufuncs.
|
|
"""
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import Series
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestPtp:
|
|
def test_ptp(self):
|
|
# GH#21614
|
|
N = 1000
|
|
arr = np.random.default_rng(2).standard_normal(N)
|
|
ser = Series(arr)
|
|
assert np.ptp(ser) == np.ptp(arr)
|
|
|
|
|
|
def test_numpy_unique(datetime_series):
|
|
# it works!
|
|
np.unique(datetime_series)
|
|
|
|
|
|
@pytest.mark.parametrize("index", [["a", "b", "c", "d", "e"], None])
|
|
def test_numpy_argwhere(index):
|
|
# GH#35331
|
|
|
|
s = Series(range(5), index=index, dtype=np.int64)
|
|
|
|
result = np.argwhere(s > 2).astype(np.int64)
|
|
expected = np.array([[3], [4]], dtype=np.int64)
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("pyarrow")
|
|
def test_log_arrow_backed_missing_value():
|
|
# GH#56285
|
|
ser = Series([1, 2, None], dtype="float64[pyarrow]")
|
|
result = np.log(ser)
|
|
expected = np.log(Series([1, 2, None], dtype="float64"))
|
|
tm.assert_series_equal(result, expected)
|