Traktor/myenv/Lib/site-packages/pandas/tests/test_downstream.py
2024-05-23 01:57:24 +02:00

363 lines
10 KiB
Python

"""
Testing that we work in the downstream packages
"""
import array
import subprocess
import sys
import numpy as np
import pytest
from pandas.errors import IntCastingNaNError
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Series,
TimedeltaIndex,
)
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
TimedeltaArray,
)
@pytest.fixture
def df():
return DataFrame({"A": [1, 2, 3]})
def test_dask(df):
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
olduse = pd.get_option("compute.use_numexpr")
try:
pytest.importorskip("toolz")
dd = pytest.importorskip("dask.dataframe")
ddf = dd.from_pandas(df, npartitions=3)
assert ddf.A is not None
assert ddf.compute() is not None
finally:
pd.set_option("compute.use_numexpr", olduse)
def test_dask_ufunc():
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
olduse = pd.get_option("compute.use_numexpr")
try:
da = pytest.importorskip("dask.array")
dd = pytest.importorskip("dask.dataframe")
s = Series([1.5, 2.3, 3.7, 4.0])
ds = dd.from_pandas(s, npartitions=2)
result = da.fix(ds).compute()
expected = np.fix(s)
tm.assert_series_equal(result, expected)
finally:
pd.set_option("compute.use_numexpr", olduse)
def test_construct_dask_float_array_int_dtype_match_ndarray():
# GH#40110 make sure we treat a float-dtype dask array with the same
# rules we would for an ndarray
dd = pytest.importorskip("dask.dataframe")
arr = np.array([1, 2.5, 3])
darr = dd.from_array(arr)
res = Series(darr)
expected = Series(arr)
tm.assert_series_equal(res, expected)
# GH#49599 in 2.0 we raise instead of silently ignoring the dtype
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
Series(darr, dtype="i8")
msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
arr[2] = np.nan
with pytest.raises(IntCastingNaNError, match=msg):
Series(darr, dtype="i8")
# which is the same as we get with a numpy input
with pytest.raises(IntCastingNaNError, match=msg):
Series(arr, dtype="i8")
def test_xarray(df):
pytest.importorskip("xarray")
assert df.to_xarray() is not None
def test_xarray_cftimeindex_nearest():
# https://github.com/pydata/xarray/issues/3751
cftime = pytest.importorskip("cftime")
xarray = pytest.importorskip("xarray")
times = xarray.cftime_range("0001", periods=2)
key = cftime.DatetimeGregorian(2000, 1, 1)
result = times.get_indexer([key], method="nearest")
expected = 1
assert result == expected
@pytest.mark.single_cpu
def test_oo_optimizable():
# GH 21071
subprocess.check_call([sys.executable, "-OO", "-c", "import pandas"])
@pytest.mark.single_cpu
def test_oo_optimized_datetime_index_unpickle():
# GH 42866
subprocess.check_call(
[
sys.executable,
"-OO",
"-c",
(
"import pandas as pd, pickle; "
"pickle.loads(pickle.dumps(pd.date_range('2021-01-01', periods=1)))"
),
]
)
def test_statsmodels():
smf = pytest.importorskip("statsmodels.formula.api")
df = DataFrame(
{"Lottery": range(5), "Literacy": range(5), "Pop1831": range(100, 105)}
)
smf.ols("Lottery ~ Literacy + np.log(Pop1831)", data=df).fit()
def test_scikit_learn():
pytest.importorskip("sklearn")
from sklearn import (
datasets,
svm,
)
digits = datasets.load_digits()
clf = svm.SVC(gamma=0.001, C=100.0)
clf.fit(digits.data[:-1], digits.target[:-1])
clf.predict(digits.data[-1:])
def test_seaborn():
seaborn = pytest.importorskip("seaborn")
tips = DataFrame(
{"day": pd.date_range("2023", freq="D", periods=5), "total_bill": range(5)}
)
seaborn.stripplot(x="day", y="total_bill", data=tips)
def test_pandas_datareader():
pytest.importorskip("pandas_datareader")
@pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
def test_pyarrow(df):
pyarrow = pytest.importorskip("pyarrow")
table = pyarrow.Table.from_pandas(df)
result = table.to_pandas()
tm.assert_frame_equal(result, df)
def test_yaml_dump(df):
# GH#42748
yaml = pytest.importorskip("yaml")
dumped = yaml.dump(df)
loaded = yaml.load(dumped, Loader=yaml.Loader)
tm.assert_frame_equal(df, loaded)
loaded2 = yaml.load(dumped, Loader=yaml.UnsafeLoader)
tm.assert_frame_equal(df, loaded2)
@pytest.mark.single_cpu
def test_missing_required_dependency():
# GH 23868
# To ensure proper isolation, we pass these flags
# -S : disable site-packages
# -s : disable user site-packages
# -E : disable PYTHON* env vars, especially PYTHONPATH
# https://github.com/MacPython/pandas-wheels/pull/50
pyexe = sys.executable.replace("\\", "/")
# We skip this test if pandas is installed as a site package. We first
# import the package normally and check the path to the module before
# executing the test which imports pandas with site packages disabled.
call = [pyexe, "-c", "import pandas;print(pandas.__file__)"]
output = subprocess.check_output(call).decode()
if "site-packages" in output:
pytest.skip("pandas installed as site package")
# This test will fail if pandas is installed as a site package. The flags
# prevent pandas being imported and the test will report Failed: DID NOT
# RAISE <class 'subprocess.CalledProcessError'>
call = [pyexe, "-sSE", "-c", "import pandas"]
msg = (
rf"Command '\['{pyexe}', '-sSE', '-c', 'import pandas'\]' "
"returned non-zero exit status 1."
)
with pytest.raises(subprocess.CalledProcessError, match=msg) as exc:
subprocess.check_output(call, stderr=subprocess.STDOUT)
output = exc.value.stdout.decode()
for name in ["numpy", "pytz", "dateutil"]:
assert name in output
def test_frame_setitem_dask_array_into_new_col():
# GH#47128
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
olduse = pd.get_option("compute.use_numexpr")
try:
da = pytest.importorskip("dask.array")
dda = da.array([1, 2])
df = DataFrame({"a": ["a", "b"]})
df["b"] = dda
df["c"] = dda
df.loc[[False, True], "b"] = 100
result = df.loc[[1], :]
expected = DataFrame({"a": ["b"], "b": [100], "c": [2]}, index=[1])
tm.assert_frame_equal(result, expected)
finally:
pd.set_option("compute.use_numexpr", olduse)
def test_pandas_priority():
# GH#48347
class MyClass:
__pandas_priority__ = 5000
def __radd__(self, other):
return self
left = MyClass()
right = Series(range(3))
assert right.__add__(left) is NotImplemented
assert right + left is left
@pytest.fixture(
params=[
"memoryview",
"array",
pytest.param("dask", marks=td.skip_if_no("dask.array")),
pytest.param("xarray", marks=td.skip_if_no("xarray")),
]
)
def array_likes(request):
"""
Fixture giving a numpy array and a parametrized 'data' object, which can
be a memoryview, array, dask or xarray object created from the numpy array.
"""
# GH#24539 recognize e.g xarray, dask, ...
arr = np.array([1, 2, 3], dtype=np.int64)
name = request.param
if name == "memoryview":
data = memoryview(arr)
elif name == "array":
data = array.array("i", arr)
elif name == "dask":
import dask.array
data = dask.array.array(arr)
elif name == "xarray":
import xarray as xr
data = xr.DataArray(arr)
return arr, data
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
def test_from_obscure_array(dtype, array_likes):
# GH#24539 recognize e.g xarray, dask, ...
# Note: we dont do this for PeriodArray bc _from_sequence won't accept
# an array of integers
# TODO: could check with arraylike of Period objects
arr, data = array_likes
cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype]
depr_msg = f"{cls.__name__}.__init__ is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
expected = cls(arr)
result = cls._from_sequence(data, dtype=dtype)
tm.assert_extension_array_equal(result, expected)
if not isinstance(data, memoryview):
# FIXME(GH#44431) these raise on memoryview and attempted fix
# fails on py3.10
func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype]
result = func(arr).array
expected = func(data).array
tm.assert_equal(result, expected)
# Let's check the Indexes while we're here
idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype]
result = idx_cls(arr)
expected = idx_cls(data)
tm.assert_index_equal(result, expected)
def test_dataframe_consortium() -> None:
"""
Test some basic methods of the dataframe consortium standard.
Full testing is done at https://github.com/data-apis/dataframe-api-compat,
this is just to check that the entry point works as expected.
"""
pytest.importorskip("dataframe_api_compat")
df_pd = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df = df_pd.__dataframe_consortium_standard__()
result_1 = df.get_column_names()
expected_1 = ["a", "b"]
assert result_1 == expected_1
ser = Series([1, 2, 3], name="a")
col = ser.__column_consortium_standard__()
assert col.name == "a"
def test_xarray_coerce_unit():
# GH44053
xr = pytest.importorskip("xarray")
arr = xr.DataArray([1, 2, 3])
result = pd.to_datetime(arr, unit="ns")
expected = DatetimeIndex(
[
"1970-01-01 00:00:00.000000001",
"1970-01-01 00:00:00.000000002",
"1970-01-01 00:00:00.000000003",
],
dtype="datetime64[ns]",
freq=None,
)
tm.assert_index_equal(result, expected)