603 lines
17 KiB
Python
603 lines
17 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
import numpy as np
|
|
|
|
from pandas._libs import lib
|
|
from pandas._libs.algos import unique_deltas
|
|
from pandas._libs.tslibs import (
|
|
Timestamp,
|
|
get_unit_from_dtype,
|
|
periods_per_day,
|
|
tz_convert_from_utc,
|
|
)
|
|
from pandas._libs.tslibs.ccalendar import (
|
|
DAYS,
|
|
MONTH_ALIASES,
|
|
MONTH_NUMBERS,
|
|
MONTHS,
|
|
int_to_weekday,
|
|
)
|
|
from pandas._libs.tslibs.dtypes import (
|
|
OFFSET_TO_PERIOD_FREQSTR,
|
|
freq_to_period_freqstr,
|
|
)
|
|
from pandas._libs.tslibs.fields import (
|
|
build_field_sarray,
|
|
month_position_check,
|
|
)
|
|
from pandas._libs.tslibs.offsets import (
|
|
DateOffset,
|
|
Day,
|
|
to_offset,
|
|
)
|
|
from pandas._libs.tslibs.parsing import get_rule_month
|
|
from pandas.util._decorators import cache_readonly
|
|
|
|
from pandas.core.dtypes.common import is_numeric_dtype
|
|
from pandas.core.dtypes.dtypes import (
|
|
DatetimeTZDtype,
|
|
PeriodDtype,
|
|
)
|
|
from pandas.core.dtypes.generic import (
|
|
ABCIndex,
|
|
ABCSeries,
|
|
)
|
|
|
|
from pandas.core.algorithms import unique
|
|
|
|
if TYPE_CHECKING:
|
|
from pandas._typing import npt
|
|
|
|
from pandas import (
|
|
DatetimeIndex,
|
|
Series,
|
|
TimedeltaIndex,
|
|
)
|
|
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
|
|
# --------------------------------------------------------------------
|
|
# Offset related functions
|
|
|
|
_need_suffix = ["QS", "BQE", "BQS", "YS", "BYE", "BYS"]
|
|
|
|
for _prefix in _need_suffix:
|
|
for _m in MONTHS:
|
|
key = f"{_prefix}-{_m}"
|
|
OFFSET_TO_PERIOD_FREQSTR[key] = OFFSET_TO_PERIOD_FREQSTR[_prefix]
|
|
|
|
for _prefix in ["Y", "Q"]:
|
|
for _m in MONTHS:
|
|
_alias = f"{_prefix}-{_m}"
|
|
OFFSET_TO_PERIOD_FREQSTR[_alias] = _alias
|
|
|
|
for _d in DAYS:
|
|
OFFSET_TO_PERIOD_FREQSTR[f"W-{_d}"] = f"W-{_d}"
|
|
|
|
|
|
def get_period_alias(offset_str: str) -> str | None:
|
|
"""
|
|
Alias to closest period strings BQ->Q etc.
|
|
"""
|
|
return OFFSET_TO_PERIOD_FREQSTR.get(offset_str, None)
|
|
|
|
|
|
# ---------------------------------------------------------------------
|
|
# Period codes
|
|
|
|
|
|
def infer_freq(
|
|
index: DatetimeIndex | TimedeltaIndex | Series | DatetimeLikeArrayMixin,
|
|
) -> str | None:
|
|
"""
|
|
Infer the most likely frequency given the input index.
|
|
|
|
Parameters
|
|
----------
|
|
index : DatetimeIndex, TimedeltaIndex, Series or array-like
|
|
If passed a Series will use the values of the series (NOT THE INDEX).
|
|
|
|
Returns
|
|
-------
|
|
str or None
|
|
None if no discernible frequency.
|
|
|
|
Raises
|
|
------
|
|
TypeError
|
|
If the index is not datetime-like.
|
|
ValueError
|
|
If there are fewer than three values.
|
|
|
|
Examples
|
|
--------
|
|
>>> idx = pd.date_range(start='2020/12/01', end='2020/12/30', periods=30)
|
|
>>> pd.infer_freq(idx)
|
|
'D'
|
|
"""
|
|
from pandas.core.api import DatetimeIndex
|
|
|
|
if isinstance(index, ABCSeries):
|
|
values = index._values
|
|
if not (
|
|
lib.is_np_dtype(values.dtype, "mM")
|
|
or isinstance(values.dtype, DatetimeTZDtype)
|
|
or values.dtype == object
|
|
):
|
|
raise TypeError(
|
|
"cannot infer freq from a non-convertible dtype "
|
|
f"on a Series of {index.dtype}"
|
|
)
|
|
index = values
|
|
|
|
inferer: _FrequencyInferer
|
|
|
|
if not hasattr(index, "dtype"):
|
|
pass
|
|
elif isinstance(index.dtype, PeriodDtype):
|
|
raise TypeError(
|
|
"PeriodIndex given. Check the `freq` attribute "
|
|
"instead of using infer_freq."
|
|
)
|
|
elif lib.is_np_dtype(index.dtype, "m"):
|
|
# Allow TimedeltaIndex and TimedeltaArray
|
|
inferer = _TimedeltaFrequencyInferer(index)
|
|
return inferer.get_freq()
|
|
|
|
elif is_numeric_dtype(index.dtype):
|
|
raise TypeError(
|
|
f"cannot infer freq from a non-convertible index of dtype {index.dtype}"
|
|
)
|
|
|
|
if not isinstance(index, DatetimeIndex):
|
|
index = DatetimeIndex(index)
|
|
|
|
inferer = _FrequencyInferer(index)
|
|
return inferer.get_freq()
|
|
|
|
|
|
class _FrequencyInferer:
|
|
"""
|
|
Not sure if I can avoid the state machine here
|
|
"""
|
|
|
|
def __init__(self, index) -> None:
|
|
self.index = index
|
|
self.i8values = index.asi8
|
|
|
|
# For get_unit_from_dtype we need the dtype to the underlying ndarray,
|
|
# which for tz-aware is not the same as index.dtype
|
|
if isinstance(index, ABCIndex):
|
|
# error: Item "ndarray[Any, Any]" of "Union[ExtensionArray,
|
|
# ndarray[Any, Any]]" has no attribute "_ndarray"
|
|
self._creso = get_unit_from_dtype(
|
|
index._data._ndarray.dtype # type: ignore[union-attr]
|
|
)
|
|
else:
|
|
# otherwise we have DTA/TDA
|
|
self._creso = get_unit_from_dtype(index._ndarray.dtype)
|
|
|
|
# This moves the values, which are implicitly in UTC, to the
|
|
# the timezone so they are in local time
|
|
if hasattr(index, "tz"):
|
|
if index.tz is not None:
|
|
self.i8values = tz_convert_from_utc(
|
|
self.i8values, index.tz, reso=self._creso
|
|
)
|
|
|
|
if len(index) < 3:
|
|
raise ValueError("Need at least 3 dates to infer frequency")
|
|
|
|
self.is_monotonic = (
|
|
self.index._is_monotonic_increasing or self.index._is_monotonic_decreasing
|
|
)
|
|
|
|
@cache_readonly
|
|
def deltas(self) -> npt.NDArray[np.int64]:
|
|
return unique_deltas(self.i8values)
|
|
|
|
@cache_readonly
|
|
def deltas_asi8(self) -> npt.NDArray[np.int64]:
|
|
# NB: we cannot use self.i8values here because we may have converted
|
|
# the tz in __init__
|
|
return unique_deltas(self.index.asi8)
|
|
|
|
@cache_readonly
|
|
def is_unique(self) -> bool:
|
|
return len(self.deltas) == 1
|
|
|
|
@cache_readonly
|
|
def is_unique_asi8(self) -> bool:
|
|
return len(self.deltas_asi8) == 1
|
|
|
|
def get_freq(self) -> str | None:
|
|
"""
|
|
Find the appropriate frequency string to describe the inferred
|
|
frequency of self.i8values
|
|
|
|
Returns
|
|
-------
|
|
str or None
|
|
"""
|
|
if not self.is_monotonic or not self.index._is_unique:
|
|
return None
|
|
|
|
delta = self.deltas[0]
|
|
ppd = periods_per_day(self._creso)
|
|
if delta and _is_multiple(delta, ppd):
|
|
return self._infer_daily_rule()
|
|
|
|
# Business hourly, maybe. 17: one day / 65: one weekend
|
|
if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]):
|
|
return "bh"
|
|
|
|
# Possibly intraday frequency. Here we use the
|
|
# original .asi8 values as the modified values
|
|
# will not work around DST transitions. See #8772
|
|
if not self.is_unique_asi8:
|
|
return None
|
|
|
|
delta = self.deltas_asi8[0]
|
|
pph = ppd // 24
|
|
ppm = pph // 60
|
|
pps = ppm // 60
|
|
if _is_multiple(delta, pph):
|
|
# Hours
|
|
return _maybe_add_count("h", delta / pph)
|
|
elif _is_multiple(delta, ppm):
|
|
# Minutes
|
|
return _maybe_add_count("min", delta / ppm)
|
|
elif _is_multiple(delta, pps):
|
|
# Seconds
|
|
return _maybe_add_count("s", delta / pps)
|
|
elif _is_multiple(delta, (pps // 1000)):
|
|
# Milliseconds
|
|
return _maybe_add_count("ms", delta / (pps // 1000))
|
|
elif _is_multiple(delta, (pps // 1_000_000)):
|
|
# Microseconds
|
|
return _maybe_add_count("us", delta / (pps // 1_000_000))
|
|
else:
|
|
# Nanoseconds
|
|
return _maybe_add_count("ns", delta)
|
|
|
|
@cache_readonly
|
|
def day_deltas(self) -> list[int]:
|
|
ppd = periods_per_day(self._creso)
|
|
return [x / ppd for x in self.deltas]
|
|
|
|
@cache_readonly
|
|
def hour_deltas(self) -> list[int]:
|
|
pph = periods_per_day(self._creso) // 24
|
|
return [x / pph for x in self.deltas]
|
|
|
|
@cache_readonly
|
|
def fields(self) -> np.ndarray: # structured array of fields
|
|
return build_field_sarray(self.i8values, reso=self._creso)
|
|
|
|
@cache_readonly
|
|
def rep_stamp(self) -> Timestamp:
|
|
return Timestamp(self.i8values[0], unit=self.index.unit)
|
|
|
|
def month_position_check(self) -> str | None:
|
|
return month_position_check(self.fields, self.index.dayofweek)
|
|
|
|
@cache_readonly
|
|
def mdiffs(self) -> npt.NDArray[np.int64]:
|
|
nmonths = self.fields["Y"] * 12 + self.fields["M"]
|
|
return unique_deltas(nmonths.astype("i8"))
|
|
|
|
@cache_readonly
|
|
def ydiffs(self) -> npt.NDArray[np.int64]:
|
|
return unique_deltas(self.fields["Y"].astype("i8"))
|
|
|
|
def _infer_daily_rule(self) -> str | None:
|
|
annual_rule = self._get_annual_rule()
|
|
if annual_rule:
|
|
nyears = self.ydiffs[0]
|
|
month = MONTH_ALIASES[self.rep_stamp.month]
|
|
alias = f"{annual_rule}-{month}"
|
|
return _maybe_add_count(alias, nyears)
|
|
|
|
quarterly_rule = self._get_quarterly_rule()
|
|
if quarterly_rule:
|
|
nquarters = self.mdiffs[0] / 3
|
|
mod_dict = {0: 12, 2: 11, 1: 10}
|
|
month = MONTH_ALIASES[mod_dict[self.rep_stamp.month % 3]]
|
|
alias = f"{quarterly_rule}-{month}"
|
|
return _maybe_add_count(alias, nquarters)
|
|
|
|
monthly_rule = self._get_monthly_rule()
|
|
if monthly_rule:
|
|
return _maybe_add_count(monthly_rule, self.mdiffs[0])
|
|
|
|
if self.is_unique:
|
|
return self._get_daily_rule()
|
|
|
|
if self._is_business_daily():
|
|
return "B"
|
|
|
|
wom_rule = self._get_wom_rule()
|
|
if wom_rule:
|
|
return wom_rule
|
|
|
|
return None
|
|
|
|
def _get_daily_rule(self) -> str | None:
|
|
ppd = periods_per_day(self._creso)
|
|
days = self.deltas[0] / ppd
|
|
if days % 7 == 0:
|
|
# Weekly
|
|
wd = int_to_weekday[self.rep_stamp.weekday()]
|
|
alias = f"W-{wd}"
|
|
return _maybe_add_count(alias, days / 7)
|
|
else:
|
|
return _maybe_add_count("D", days)
|
|
|
|
def _get_annual_rule(self) -> str | None:
|
|
if len(self.ydiffs) > 1:
|
|
return None
|
|
|
|
if len(unique(self.fields["M"])) > 1:
|
|
return None
|
|
|
|
pos_check = self.month_position_check()
|
|
|
|
if pos_check is None:
|
|
return None
|
|
else:
|
|
return {"cs": "YS", "bs": "BYS", "ce": "YE", "be": "BYE"}.get(pos_check)
|
|
|
|
def _get_quarterly_rule(self) -> str | None:
|
|
if len(self.mdiffs) > 1:
|
|
return None
|
|
|
|
if not self.mdiffs[0] % 3 == 0:
|
|
return None
|
|
|
|
pos_check = self.month_position_check()
|
|
|
|
if pos_check is None:
|
|
return None
|
|
else:
|
|
return {"cs": "QS", "bs": "BQS", "ce": "QE", "be": "BQE"}.get(pos_check)
|
|
|
|
def _get_monthly_rule(self) -> str | None:
|
|
if len(self.mdiffs) > 1:
|
|
return None
|
|
pos_check = self.month_position_check()
|
|
|
|
if pos_check is None:
|
|
return None
|
|
else:
|
|
return {"cs": "MS", "bs": "BMS", "ce": "ME", "be": "BME"}.get(pos_check)
|
|
|
|
def _is_business_daily(self) -> bool:
|
|
# quick check: cannot be business daily
|
|
if self.day_deltas != [1, 3]:
|
|
return False
|
|
|
|
# probably business daily, but need to confirm
|
|
first_weekday = self.index[0].weekday()
|
|
shifts = np.diff(self.i8values)
|
|
ppd = periods_per_day(self._creso)
|
|
shifts = np.floor_divide(shifts, ppd)
|
|
weekdays = np.mod(first_weekday + np.cumsum(shifts), 7)
|
|
|
|
return bool(
|
|
np.all(
|
|
((weekdays == 0) & (shifts == 3))
|
|
| ((weekdays > 0) & (weekdays <= 4) & (shifts == 1))
|
|
)
|
|
)
|
|
|
|
def _get_wom_rule(self) -> str | None:
|
|
weekdays = unique(self.index.weekday)
|
|
if len(weekdays) > 1:
|
|
return None
|
|
|
|
week_of_months = unique((self.index.day - 1) // 7)
|
|
# Only attempt to infer up to WOM-4. See #9425
|
|
week_of_months = week_of_months[week_of_months < 4]
|
|
if len(week_of_months) == 0 or len(week_of_months) > 1:
|
|
return None
|
|
|
|
# get which week
|
|
week = week_of_months[0] + 1
|
|
wd = int_to_weekday[weekdays[0]]
|
|
|
|
return f"WOM-{week}{wd}"
|
|
|
|
|
|
class _TimedeltaFrequencyInferer(_FrequencyInferer):
|
|
def _infer_daily_rule(self):
|
|
if self.is_unique:
|
|
return self._get_daily_rule()
|
|
|
|
|
|
def _is_multiple(us, mult: int) -> bool:
|
|
return us % mult == 0
|
|
|
|
|
|
def _maybe_add_count(base: str, count: float) -> str:
|
|
if count != 1:
|
|
assert count == int(count)
|
|
count = int(count)
|
|
return f"{count}{base}"
|
|
else:
|
|
return base
|
|
|
|
|
|
# ----------------------------------------------------------------------
|
|
# Frequency comparison
|
|
|
|
|
|
def is_subperiod(source, target) -> bool:
|
|
"""
|
|
Returns True if downsampling is possible between source and target
|
|
frequencies
|
|
|
|
Parameters
|
|
----------
|
|
source : str or DateOffset
|
|
Frequency converting from
|
|
target : str or DateOffset
|
|
Frequency converting to
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
"""
|
|
if target is None or source is None:
|
|
return False
|
|
source = _maybe_coerce_freq(source)
|
|
target = _maybe_coerce_freq(target)
|
|
|
|
if _is_annual(target):
|
|
if _is_quarterly(source):
|
|
return _quarter_months_conform(
|
|
get_rule_month(source), get_rule_month(target)
|
|
)
|
|
return source in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
|
|
elif _is_quarterly(target):
|
|
return source in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
|
|
elif _is_monthly(target):
|
|
return source in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif _is_weekly(target):
|
|
return source in {target, "D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif target == "B":
|
|
return source in {"B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif target == "C":
|
|
return source in {"C", "h", "min", "s", "ms", "us", "ns"}
|
|
elif target == "D":
|
|
return source in {"D", "h", "min", "s", "ms", "us", "ns"}
|
|
elif target == "h":
|
|
return source in {"h", "min", "s", "ms", "us", "ns"}
|
|
elif target == "min":
|
|
return source in {"min", "s", "ms", "us", "ns"}
|
|
elif target == "s":
|
|
return source in {"s", "ms", "us", "ns"}
|
|
elif target == "ms":
|
|
return source in {"ms", "us", "ns"}
|
|
elif target == "us":
|
|
return source in {"us", "ns"}
|
|
elif target == "ns":
|
|
return source in {"ns"}
|
|
else:
|
|
return False
|
|
|
|
|
|
def is_superperiod(source, target) -> bool:
|
|
"""
|
|
Returns True if upsampling is possible between source and target
|
|
frequencies
|
|
|
|
Parameters
|
|
----------
|
|
source : str or DateOffset
|
|
Frequency converting from
|
|
target : str or DateOffset
|
|
Frequency converting to
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
"""
|
|
if target is None or source is None:
|
|
return False
|
|
source = _maybe_coerce_freq(source)
|
|
target = _maybe_coerce_freq(target)
|
|
|
|
if _is_annual(source):
|
|
if _is_annual(target):
|
|
return get_rule_month(source) == get_rule_month(target)
|
|
|
|
if _is_quarterly(target):
|
|
smonth = get_rule_month(source)
|
|
tmonth = get_rule_month(target)
|
|
return _quarter_months_conform(smonth, tmonth)
|
|
return target in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
|
|
elif _is_quarterly(source):
|
|
return target in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
|
|
elif _is_monthly(source):
|
|
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif _is_weekly(source):
|
|
return target in {source, "D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif source == "B":
|
|
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif source == "C":
|
|
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif source == "D":
|
|
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
|
|
elif source == "h":
|
|
return target in {"h", "min", "s", "ms", "us", "ns"}
|
|
elif source == "min":
|
|
return target in {"min", "s", "ms", "us", "ns"}
|
|
elif source == "s":
|
|
return target in {"s", "ms", "us", "ns"}
|
|
elif source == "ms":
|
|
return target in {"ms", "us", "ns"}
|
|
elif source == "us":
|
|
return target in {"us", "ns"}
|
|
elif source == "ns":
|
|
return target in {"ns"}
|
|
else:
|
|
return False
|
|
|
|
|
|
def _maybe_coerce_freq(code) -> str:
|
|
"""we might need to coerce a code to a rule_code
|
|
and uppercase it
|
|
|
|
Parameters
|
|
----------
|
|
source : str or DateOffset
|
|
Frequency converting from
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
"""
|
|
assert code is not None
|
|
if isinstance(code, DateOffset):
|
|
code = freq_to_period_freqstr(1, code.name)
|
|
if code in {"h", "min", "s", "ms", "us", "ns"}:
|
|
return code
|
|
else:
|
|
return code.upper()
|
|
|
|
|
|
def _quarter_months_conform(source: str, target: str) -> bool:
|
|
snum = MONTH_NUMBERS[source]
|
|
tnum = MONTH_NUMBERS[target]
|
|
return snum % 3 == tnum % 3
|
|
|
|
|
|
def _is_annual(rule: str) -> bool:
|
|
rule = rule.upper()
|
|
return rule == "Y" or rule.startswith("Y-")
|
|
|
|
|
|
def _is_quarterly(rule: str) -> bool:
|
|
rule = rule.upper()
|
|
return rule == "Q" or rule.startswith(("Q-", "BQ"))
|
|
|
|
|
|
def _is_monthly(rule: str) -> bool:
|
|
rule = rule.upper()
|
|
return rule in ("M", "BM")
|
|
|
|
|
|
def _is_weekly(rule: str) -> bool:
|
|
rule = rule.upper()
|
|
return rule == "W" or rule.startswith("W-")
|
|
|
|
|
|
__all__ = [
|
|
"Day",
|
|
"get_period_alias",
|
|
"infer_freq",
|
|
"is_subperiod",
|
|
"is_superperiod",
|
|
"to_offset",
|
|
]
|