288 lines
11 KiB
Python
288 lines
11 KiB
Python
# Code adapted from "upfirdn" python library with permission:
|
|
#
|
|
# Copyright (c) 2009, Motorola, Inc
|
|
#
|
|
# All Rights Reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met:
|
|
#
|
|
# * Redistributions of source code must retain the above copyright notice,
|
|
# this list of conditions and the following disclaimer.
|
|
#
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
#
|
|
# * Neither the name of Motorola nor the names of its contributors may be
|
|
# used to endorse or promote products derived from this software without
|
|
# specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
import numpy as np
|
|
from itertools import product
|
|
|
|
from numpy.testing import assert_equal, assert_allclose
|
|
from pytest import raises as assert_raises
|
|
import pytest
|
|
|
|
from scipy.signal import upfirdn, firwin
|
|
from scipy.signal._upfirdn import _output_len, _upfirdn_modes
|
|
from scipy.signal._upfirdn_apply import _pad_test
|
|
|
|
|
|
def upfirdn_naive(x, h, up=1, down=1):
|
|
"""Naive upfirdn processing in Python.
|
|
|
|
Note: arg order (x, h) differs to facilitate apply_along_axis use.
|
|
"""
|
|
h = np.asarray(h)
|
|
out = np.zeros(len(x) * up, x.dtype)
|
|
out[::up] = x
|
|
out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)]
|
|
return out
|
|
|
|
|
|
class UpFIRDnCase:
|
|
"""Test _UpFIRDn object"""
|
|
def __init__(self, up, down, h, x_dtype):
|
|
self.up = up
|
|
self.down = down
|
|
self.h = np.atleast_1d(h)
|
|
self.x_dtype = x_dtype
|
|
self.rng = np.random.RandomState(17)
|
|
|
|
def __call__(self):
|
|
# tiny signal
|
|
self.scrub(np.ones(1, self.x_dtype))
|
|
# ones
|
|
self.scrub(np.ones(10, self.x_dtype)) # ones
|
|
# randn
|
|
x = self.rng.randn(10).astype(self.x_dtype)
|
|
if self.x_dtype in (np.complex64, np.complex128):
|
|
x += 1j * self.rng.randn(10)
|
|
self.scrub(x)
|
|
# ramp
|
|
self.scrub(np.arange(10).astype(self.x_dtype))
|
|
# 3D, random
|
|
size = (2, 3, 5)
|
|
x = self.rng.randn(*size).astype(self.x_dtype)
|
|
if self.x_dtype in (np.complex64, np.complex128):
|
|
x += 1j * self.rng.randn(*size)
|
|
for axis in range(len(size)):
|
|
self.scrub(x, axis=axis)
|
|
x = x[:, ::2, 1::3].T
|
|
for axis in range(len(size)):
|
|
self.scrub(x, axis=axis)
|
|
|
|
def scrub(self, x, axis=-1):
|
|
yr = np.apply_along_axis(upfirdn_naive, axis, x,
|
|
self.h, self.up, self.down)
|
|
want_len = _output_len(len(self.h), x.shape[axis], self.up, self.down)
|
|
assert yr.shape[axis] == want_len
|
|
y = upfirdn(self.h, x, self.up, self.down, axis=axis)
|
|
assert y.shape[axis] == want_len
|
|
assert y.shape == yr.shape
|
|
dtypes = (self.h.dtype, x.dtype)
|
|
if all(d == np.complex64 for d in dtypes):
|
|
assert_equal(y.dtype, np.complex64)
|
|
elif np.complex64 in dtypes and np.float32 in dtypes:
|
|
assert_equal(y.dtype, np.complex64)
|
|
elif all(d == np.float32 for d in dtypes):
|
|
assert_equal(y.dtype, np.float32)
|
|
elif np.complex128 in dtypes or np.complex64 in dtypes:
|
|
assert_equal(y.dtype, np.complex128)
|
|
else:
|
|
assert_equal(y.dtype, np.float64)
|
|
assert_allclose(yr, y)
|
|
|
|
|
|
_UPFIRDN_TYPES = (int, np.float32, np.complex64, float, complex)
|
|
|
|
|
|
class TestUpfirdn:
|
|
|
|
def test_valid_input(self):
|
|
assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1
|
|
assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1
|
|
assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1)
|
|
|
|
@pytest.mark.parametrize('len_h', [1, 2, 3, 4, 5])
|
|
@pytest.mark.parametrize('len_x', [1, 2, 3, 4, 5])
|
|
def test_singleton(self, len_h, len_x):
|
|
# gh-9844: lengths producing expected outputs
|
|
h = np.zeros(len_h)
|
|
h[len_h // 2] = 1. # make h a delta
|
|
x = np.ones(len_x)
|
|
y = upfirdn(h, x, 1, 1)
|
|
want = np.pad(x, (len_h // 2, (len_h - 1) // 2), 'constant')
|
|
assert_allclose(y, want)
|
|
|
|
def test_shift_x(self):
|
|
# gh-9844: shifted x can change values?
|
|
y = upfirdn([1, 1], [1.], 1, 1)
|
|
assert_allclose(y, [1, 1]) # was [0, 1] in the issue
|
|
y = upfirdn([1, 1], [0., 1.], 1, 1)
|
|
assert_allclose(y, [0, 1, 1])
|
|
|
|
# A bunch of lengths/factors chosen because they exposed differences
|
|
# between the "old way" and new way of computing length, and then
|
|
# got `expected` from MATLAB
|
|
@pytest.mark.parametrize('len_h, len_x, up, down, expected', [
|
|
(2, 2, 5, 2, [1, 0, 0, 0]),
|
|
(2, 3, 6, 3, [1, 0, 1, 0, 1]),
|
|
(2, 4, 4, 3, [1, 0, 0, 0, 1]),
|
|
(3, 2, 6, 2, [1, 0, 0, 1, 0]),
|
|
(4, 11, 3, 5, [1, 0, 0, 1, 0, 0, 1]),
|
|
])
|
|
def test_length_factors(self, len_h, len_x, up, down, expected):
|
|
# gh-9844: weird factors
|
|
h = np.zeros(len_h)
|
|
h[0] = 1.
|
|
x = np.ones(len_x)
|
|
y = upfirdn(h, x, up, down)
|
|
assert_allclose(y, expected)
|
|
|
|
@pytest.mark.parametrize('down, want_len', [ # lengths from MATLAB
|
|
(2, 5015),
|
|
(11, 912),
|
|
(79, 127),
|
|
])
|
|
def test_vs_convolve(self, down, want_len):
|
|
# Check that up=1.0 gives same answer as convolve + slicing
|
|
random_state = np.random.RandomState(17)
|
|
try_types = (int, np.float32, np.complex64, float, complex)
|
|
size = 10000
|
|
|
|
for dtype in try_types:
|
|
x = random_state.randn(size).astype(dtype)
|
|
if dtype in (np.complex64, np.complex128):
|
|
x += 1j * random_state.randn(size)
|
|
|
|
h = firwin(31, 1. / down, window='hamming')
|
|
yl = upfirdn_naive(x, h, 1, down)
|
|
y = upfirdn(h, x, up=1, down=down)
|
|
assert y.shape == (want_len,)
|
|
assert yl.shape[0] == y.shape[0]
|
|
assert_allclose(yl, y, atol=1e-7, rtol=1e-7)
|
|
|
|
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
|
|
@pytest.mark.parametrize('h', (1., 1j))
|
|
@pytest.mark.parametrize('up, down', [(1, 1), (2, 2), (3, 2), (2, 3)])
|
|
def test_vs_naive_delta(self, x_dtype, h, up, down):
|
|
UpFIRDnCase(up, down, h, x_dtype)()
|
|
|
|
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
|
|
@pytest.mark.parametrize('h_dtype', _UPFIRDN_TYPES)
|
|
@pytest.mark.parametrize('p_max, q_max',
|
|
list(product((10, 100), (10, 100))))
|
|
def test_vs_naive(self, x_dtype, h_dtype, p_max, q_max):
|
|
tests = self._random_factors(p_max, q_max, h_dtype, x_dtype)
|
|
for test in tests:
|
|
test()
|
|
|
|
def _random_factors(self, p_max, q_max, h_dtype, x_dtype):
|
|
n_rep = 3
|
|
longest_h = 25
|
|
random_state = np.random.RandomState(17)
|
|
tests = []
|
|
|
|
for _ in range(n_rep):
|
|
# Randomize the up/down factors somewhat
|
|
p_add = q_max if p_max > q_max else 1
|
|
q_add = p_max if q_max > p_max else 1
|
|
p = random_state.randint(p_max) + p_add
|
|
q = random_state.randint(q_max) + q_add
|
|
|
|
# Generate random FIR coefficients
|
|
len_h = random_state.randint(longest_h) + 1
|
|
h = np.atleast_1d(random_state.randint(len_h))
|
|
h = h.astype(h_dtype)
|
|
if h_dtype == complex:
|
|
h += 1j * random_state.randint(len_h)
|
|
|
|
tests.append(UpFIRDnCase(p, q, h, x_dtype))
|
|
|
|
return tests
|
|
|
|
@pytest.mark.parametrize('mode', _upfirdn_modes)
|
|
def test_extensions(self, mode):
|
|
"""Test vs. manually computed results for modes not in numpy's pad."""
|
|
x = np.array([1, 2, 3, 1], dtype=float)
|
|
npre, npost = 6, 6
|
|
y = _pad_test(x, npre=npre, npost=npost, mode=mode)
|
|
if mode == 'antisymmetric':
|
|
y_expected = np.asarray(
|
|
[3, 1, -1, -3, -2, -1, 1, 2, 3, 1, -1, -3, -2, -1, 1, 2])
|
|
elif mode == 'antireflect':
|
|
y_expected = np.asarray(
|
|
[1, 2, 3, 1, -1, 0, 1, 2, 3, 1, -1, 0, 1, 2, 3, 1])
|
|
elif mode == 'smooth':
|
|
y_expected = np.asarray(
|
|
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 1, -1, -3, -5, -7, -9, -11])
|
|
elif mode == "line":
|
|
lin_slope = (x[-1] - x[0]) / (len(x) - 1)
|
|
left = x[0] + np.arange(-npre, 0, 1) * lin_slope
|
|
right = x[-1] + np.arange(1, npost + 1) * lin_slope
|
|
y_expected = np.concatenate((left, x, right))
|
|
else:
|
|
y_expected = np.pad(x, (npre, npost), mode=mode)
|
|
assert_allclose(y, y_expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
'size, h_len, mode, dtype',
|
|
product(
|
|
[8],
|
|
[4, 5, 26], # include cases with h_len > 2*size
|
|
_upfirdn_modes,
|
|
[np.float32, np.float64, np.complex64, np.complex128],
|
|
)
|
|
)
|
|
def test_modes(self, size, h_len, mode, dtype):
|
|
random_state = np.random.RandomState(5)
|
|
x = random_state.randn(size).astype(dtype)
|
|
if dtype in (np.complex64, np.complex128):
|
|
x += 1j * random_state.randn(size)
|
|
h = np.arange(1, 1 + h_len, dtype=x.real.dtype)
|
|
|
|
y = upfirdn(h, x, up=1, down=1, mode=mode)
|
|
# expected result: pad the input, filter with zero padding, then crop
|
|
npad = h_len - 1
|
|
if mode in ['antisymmetric', 'antireflect', 'smooth', 'line']:
|
|
# use _pad_test test function for modes not supported by np.pad.
|
|
xpad = _pad_test(x, npre=npad, npost=npad, mode=mode)
|
|
else:
|
|
xpad = np.pad(x, npad, mode=mode)
|
|
ypad = upfirdn(h, xpad, up=1, down=1, mode='constant')
|
|
y_expected = ypad[npad:-npad]
|
|
|
|
atol = rtol = np.finfo(dtype).eps * 1e2
|
|
assert_allclose(y, y_expected, atol=atol, rtol=rtol)
|
|
|
|
|
|
def test_output_len_long_input():
|
|
# Regression test for gh-17375. On Windows, a large enough input
|
|
# that should have been well within the capabilities of 64 bit integers
|
|
# would result in a 32 bit overflow because of a bug in Cython 0.29.32.
|
|
len_h = 1001
|
|
in_len = 10**8
|
|
up = 320
|
|
down = 441
|
|
out_len = _output_len(len_h, in_len, up, down)
|
|
# The expected value was computed "by hand" from the formula
|
|
# (((in_len - 1) * up + len_h) - 1) // down + 1
|
|
assert out_len == 72562360
|