Traktor/myenv/Lib/site-packages/scipy/sparse/__init__.py
2024-05-23 01:57:24 +02:00

325 lines
9.1 KiB
Python

"""
=====================================
Sparse matrices (:mod:`scipy.sparse`)
=====================================
.. currentmodule:: scipy.sparse
.. toctree::
:hidden:
sparse.csgraph
sparse.linalg
SciPy 2-D sparse array package for numeric data.
.. note::
This package is switching to an array interface, compatible with
NumPy arrays, from the older matrix interface. We recommend that
you use the array objects (`bsr_array`, `coo_array`, etc.) for
all new work.
When using the array interface, please note that:
- ``x * y`` no longer performs matrix multiplication, but
element-wise multiplication (just like with NumPy arrays). To
make code work with both arrays and matrices, use ``x @ y`` for
matrix multiplication.
- Operations such as `sum`, that used to produce dense matrices, now
produce arrays, whose multiplication behavior differs similarly.
- Sparse arrays currently must be two-dimensional. This also means
that all *slicing* operations on these objects must produce
two-dimensional results, or they will result in an error. This
will be addressed in a future version.
The construction utilities (`eye`, `kron`, `random`, `diags`, etc.)
have not yet been ported, but their results can be wrapped into arrays::
A = csr_array(eye(3))
Contents
========
Sparse array classes
--------------------
.. autosummary::
:toctree: generated/
bsr_array - Block Sparse Row array
coo_array - A sparse array in COOrdinate format
csc_array - Compressed Sparse Column array
csr_array - Compressed Sparse Row array
dia_array - Sparse array with DIAgonal storage
dok_array - Dictionary Of Keys based sparse array
lil_array - Row-based list of lists sparse array
sparray - Sparse array base class
Sparse matrix classes
---------------------
.. autosummary::
:toctree: generated/
bsr_matrix - Block Sparse Row matrix
coo_matrix - A sparse matrix in COOrdinate format
csc_matrix - Compressed Sparse Column matrix
csr_matrix - Compressed Sparse Row matrix
dia_matrix - Sparse matrix with DIAgonal storage
dok_matrix - Dictionary Of Keys based sparse matrix
lil_matrix - Row-based list of lists sparse matrix
spmatrix - Sparse matrix base class
Functions
---------
Building sparse arrays:
.. autosummary::
:toctree: generated/
diags_array - Return a sparse array from diagonals
eye_array - Sparse MxN array whose k-th diagonal is all ones
random_array - Random values in a given shape array
block_array - Build a sparse array from sub-blocks
Building sparse matrices:
.. autosummary::
:toctree: generated/
eye - Sparse MxN matrix whose k-th diagonal is all ones
identity - Identity matrix in sparse matrix format
diags - Return a sparse matrix from diagonals
spdiags - Return a sparse matrix from diagonals
bmat - Build a sparse matrix from sparse sub-blocks
random - Random values in a given shape matrix
rand - Random values in a given shape matrix (old interface)
Building larger structures from smaller (array or matrix)
.. autosummary::
:toctree: generated/
kron - kronecker product of two sparse matrices
kronsum - kronecker sum of sparse matrices
block_diag - Build a block diagonal sparse matrix
tril - Lower triangular portion of a matrix in sparse format
triu - Upper triangular portion of a matrix in sparse format
hstack - Stack sparse matrices horizontally (column wise)
vstack - Stack sparse matrices vertically (row wise)
Save and load sparse matrices:
.. autosummary::
:toctree: generated/
save_npz - Save a sparse matrix/array to a file using ``.npz`` format.
load_npz - Load a sparse matrix/array from a file using ``.npz`` format.
Sparse tools:
.. autosummary::
:toctree: generated/
find
Identifying sparse arrays:
- use `isinstance(A, sp.sparse.sparray)` to check whether an array or matrix.
- use `A.format == 'csr'` to check the sparse format
Identifying sparse matrices:
.. autosummary::
:toctree: generated/
issparse
isspmatrix
isspmatrix_csc
isspmatrix_csr
isspmatrix_bsr
isspmatrix_lil
isspmatrix_dok
isspmatrix_coo
isspmatrix_dia
Submodules
----------
.. autosummary::
csgraph - Compressed sparse graph routines
linalg - sparse linear algebra routines
Exceptions
----------
.. autosummary::
:toctree: generated/
SparseEfficiencyWarning
SparseWarning
Usage information
=================
There are seven available sparse array types:
1. `csc_array`: Compressed Sparse Column format
2. `csr_array`: Compressed Sparse Row format
3. `bsr_array`: Block Sparse Row format
4. `lil_array`: List of Lists format
5. `dok_array`: Dictionary of Keys format
6. `coo_array`: COOrdinate format (aka IJV, triplet format)
7. `dia_array`: DIAgonal format
To construct an array efficiently, use either `dok_array` or `lil_array`.
The `lil_array` class supports basic slicing and fancy indexing with a
similar syntax to NumPy arrays. As illustrated below, the COO format
may also be used to efficiently construct arrays. Despite their
similarity to NumPy arrays, it is **strongly discouraged** to use NumPy
functions directly on these arrays because NumPy may not properly convert
them for computations, leading to unexpected (and incorrect) results. If you
do want to apply a NumPy function to these arrays, first check if SciPy has
its own implementation for the given sparse array class, or **convert the
sparse array to a NumPy array** (e.g., using the ``toarray`` method of the
class) first before applying the method.
To perform manipulations such as multiplication or inversion, first
convert the array to either CSC or CSR format. The `lil_array` format is
row-based, so conversion to CSR is efficient, whereas conversion to CSC
is less so.
All conversions among the CSR, CSC, and COO formats are efficient,
linear-time operations.
Matrix vector product
---------------------
To do a vector product between a sparse array and a vector simply use
the array ``dot`` method, as described in its docstring:
>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
.. warning:: As of NumPy 1.7, ``np.dot`` is not aware of sparse arrays,
therefore using it will result on unexpected results or errors.
The corresponding dense array should be obtained first instead:
>>> np.dot(A.toarray(), v)
array([ 1, -3, -1], dtype=int64)
but then all the performance advantages would be lost.
The CSR format is especially suitable for fast matrix vector products.
Example 1
---------
Construct a 1000x1000 `lil_array` and add some values to it:
>>> from scipy.sparse import lil_array
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand
>>> A = lil_array((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))
Now convert it to CSR format and solve A x = b for x:
>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)
Convert it to a dense array and solve, and check that the result
is the same:
>>> x_ = solve(A.toarray(), b)
Now we can compute norm of the error with:
>>> err = norm(x-x_)
>>> err < 1e-10
True
It should be small :)
Example 2
---------
Construct an array in COO format:
>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_array((V,(I,J)),shape=(4,4))
Notice that the indices do not need to be sorted.
Duplicate (i,j) entries are summed when converting to CSR or CSC.
>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_array((V,(I,J)),shape=(4,4)).tocsr()
This is useful for constructing finite-element stiffness and mass matrices.
Further details
---------------
CSR column indices are not necessarily sorted. Likewise for CSC row
indices. Use the ``.sorted_indices()`` and ``.sort_indices()`` methods when
sorted indices are required (e.g., when passing data to other libraries).
"""
# Original code by Travis Oliphant.
# Modified and extended by Ed Schofield, Robert Cimrman,
# Nathan Bell, and Jake Vanderplas.
import warnings as _warnings
from ._base import *
from ._csr import *
from ._csc import *
from ._lil import *
from ._dok import *
from ._coo import *
from ._dia import *
from ._bsr import *
from ._construct import *
from ._extract import *
from ._matrix import spmatrix
from ._matrix_io import *
# For backward compatibility with v0.19.
from . import csgraph
# Deprecated namespaces, to be removed in v2.0.0
from . import (
base, bsr, compressed, construct, coo, csc, csr, data, dia, dok, extract,
lil, sparsetools, sputils
)
__all__ = [s for s in dir() if not s.startswith('_')]
# Filter PendingDeprecationWarning for np.matrix introduced with numpy 1.15
msg = 'the matrix subclass is not the recommended way'
_warnings.filterwarnings('ignore', message=msg)
from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester