Traktor/myenv/Lib/site-packages/scipy/special/_logsumexp.py
2024-05-23 01:57:24 +02:00

308 lines
8.8 KiB
Python

import numpy as np
from scipy._lib._util import _asarray_validated
__all__ = ["logsumexp", "softmax", "log_softmax"]
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
"""Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed.
.. versionadded:: 0.11.0
b : array-like, optional
Scaling factor for exp(`a`) must be of the same shape as `a` or
broadcastable to `a`. These values may be negative in order to
implement subtraction.
.. versionadded:: 0.12.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
return_sign : bool, optional
If this is set to True, the result will be a pair containing sign
information; if False, results that are negative will be returned
as NaN. Default is False (no sign information).
.. versionadded:: 0.16.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned. If ``return_sign`` is True, ``res`` contains the log of
the absolute value of the argument.
sgn : ndarray
If ``return_sign`` is True, this will be an array of floating-point
numbers matching res containing +1, 0, -1 (for real-valued inputs)
or a complex phase (for complex inputs). This gives the sign of the
argument of the logarithm in ``res``.
If ``return_sign`` is False, only one result is returned.
See Also
--------
numpy.logaddexp, numpy.logaddexp2
Notes
-----
NumPy has a logaddexp function which is very similar to `logsumexp`, but
only handles two arguments. `logaddexp.reduce` is similar to this
function, but may be less stable.
Examples
--------
>>> import numpy as np
>>> from scipy.special import logsumexp
>>> a = np.arange(10)
>>> logsumexp(a)
9.4586297444267107
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
With weights
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647
Returning a sign flag
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)
Notice that `logsumexp` does not directly support masked arrays. To use it
on a masked array, convert the mask into zero weights:
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
... mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b), np.log(5)
1.6094379124341005, 1.6094379124341005
"""
a = _asarray_validated(a, check_finite=False)
if b is not None:
a, b = np.broadcast_arrays(a, b)
if np.any(b == 0):
a = a + 0. # promote to at least float
a[b == 0] = -np.inf
# Scale by real part for complex inputs, because this affects
# the magnitude of the exponential.
a_max = np.amax(a.real, axis=axis, keepdims=True)
if a_max.ndim > 0:
a_max[~np.isfinite(a_max)] = 0
elif not np.isfinite(a_max):
a_max = 0
if b is not None:
b = np.asarray(b)
tmp = b * np.exp(a - a_max)
else:
tmp = np.exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(tmp, axis=axis, keepdims=keepdims)
if return_sign:
# For complex, use the numpy>=2.0 convention for sign.
if np.issubdtype(s.dtype, np.complexfloating):
sgn = s / np.where(s == 0, 1, abs(s))
else:
sgn = np.sign(s)
s = abs(s)
out = np.log(s)
if not keepdims:
a_max = np.squeeze(a_max, axis=axis)
out += a_max
if return_sign:
return out, sgn
else:
return out
def softmax(x, axis=None):
r"""Compute the softmax function.
The softmax function transforms each element of a collection by
computing the exponential of each element divided by the sum of the
exponentials of all the elements. That is, if `x` is a one-dimensional
numpy array::
softmax(x) = np.exp(x)/sum(np.exp(x))
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray
An array the same shape as `x`. The result will sum to 1 along the
specified axis.
Notes
-----
The formula for the softmax function :math:`\sigma(x)` for a vector
:math:`x = \{x_0, x_1, ..., x_{n-1}\}` is
.. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}
The `softmax` function is the gradient of `logsumexp`.
The implementation uses shifting to avoid overflow. See [1]_ for more
details.
.. versionadded:: 1.2.0
References
----------
.. [1] P. Blanchard, D.J. Higham, N.J. Higham, "Accurately computing the
log-sum-exp and softmax functions", IMA Journal of Numerical Analysis,
Vol.41(4), :doi:`10.1093/imanum/draa038`.
Examples
--------
>>> import numpy as np
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)
>>> x = np.array([[1, 0.5, 0.2, 3],
... [1, -1, 7, 3],
... [2, 12, 13, 3]])
...
Compute the softmax transformation over the entire array.
>>> m = softmax(x)
>>> m
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],
[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])
>>> m.sum()
1.0
Compute the softmax transformation along the first axis (i.e., the
columns).
>>> m = softmax(x, axis=0)
>>> m
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],
[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])
>>> m.sum(axis=0)
array([ 1., 1., 1., 1.])
Compute the softmax transformation along the second axis (i.e., the rows).
>>> m = softmax(x, axis=1)
>>> m
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],
[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])
>>> m.sum(axis=1)
array([ 1., 1., 1.])
"""
x = _asarray_validated(x, check_finite=False)
x_max = np.amax(x, axis=axis, keepdims=True)
exp_x_shifted = np.exp(x - x_max)
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
def log_softmax(x, axis=None):
r"""Compute the logarithm of the softmax function.
In principle::
log_softmax(x) = log(softmax(x))
but using a more accurate implementation.
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray or scalar
An array with the same shape as `x`. Exponential of the result will
sum to 1 along the specified axis. If `x` is a scalar, a scalar is
returned.
Notes
-----
`log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that
make `softmax` saturate (see examples below).
.. versionadded:: 1.5.0
Examples
--------
>>> import numpy as np
>>> from scipy.special import log_softmax
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)
>>> x = np.array([1000.0, 1.0])
>>> y = log_softmax(x)
>>> y
array([ 0., -999.])
>>> with np.errstate(divide='ignore'):
... y = np.log(softmax(x))
...
>>> y
array([ 0., -inf])
"""
x = _asarray_validated(x, check_finite=False)
x_max = np.amax(x, axis=axis, keepdims=True)
if x_max.ndim > 0:
x_max[~np.isfinite(x_max)] = 0
elif not np.isfinite(x_max):
x_max = 0
tmp = x - x_max
exp_tmp = np.exp(tmp)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(exp_tmp, axis=axis, keepdims=True)
out = np.log(s)
out = tmp - out
return out