2606 lines
73 KiB
Python
2606 lines
73 KiB
Python
"""
|
|
A collection of functions to find the weights and abscissas for
|
|
Gaussian Quadrature.
|
|
|
|
These calculations are done by finding the eigenvalues of a
|
|
tridiagonal matrix whose entries are dependent on the coefficients
|
|
in the recursion formula for the orthogonal polynomials with the
|
|
corresponding weighting function over the interval.
|
|
|
|
Many recursion relations for orthogonal polynomials are given:
|
|
|
|
.. math::
|
|
|
|
a1n f_{n+1} (x) = (a2n + a3n x ) f_n (x) - a4n f_{n-1} (x)
|
|
|
|
The recursion relation of interest is
|
|
|
|
.. math::
|
|
|
|
P_{n+1} (x) = (x - A_n) P_n (x) - B_n P_{n-1} (x)
|
|
|
|
where :math:`P` has a different normalization than :math:`f`.
|
|
|
|
The coefficients can be found as:
|
|
|
|
.. math::
|
|
|
|
A_n = -a2n / a3n
|
|
\\qquad
|
|
B_n = ( a4n / a3n \\sqrt{h_n-1 / h_n})^2
|
|
|
|
where
|
|
|
|
.. math::
|
|
|
|
h_n = \\int_a^b w(x) f_n(x)^2
|
|
|
|
assume:
|
|
|
|
.. math::
|
|
|
|
P_0 (x) = 1
|
|
\\qquad
|
|
P_{-1} (x) == 0
|
|
|
|
For the mathematical background, see [golub.welsch-1969-mathcomp]_ and
|
|
[abramowitz.stegun-1965]_.
|
|
|
|
References
|
|
----------
|
|
.. [golub.welsch-1969-mathcomp]
|
|
Golub, Gene H, and John H Welsch. 1969. Calculation of Gauss
|
|
Quadrature Rules. *Mathematics of Computation* 23, 221-230+s1--s10.
|
|
|
|
.. [abramowitz.stegun-1965]
|
|
Abramowitz, Milton, and Irene A Stegun. (1965) *Handbook of
|
|
Mathematical Functions: with Formulas, Graphs, and Mathematical
|
|
Tables*. Gaithersburg, MD: National Bureau of Standards.
|
|
http://www.math.sfu.ca/~cbm/aands/
|
|
|
|
.. [townsend.trogdon.olver-2014]
|
|
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
|
*Fast computation of Gauss quadrature nodes and
|
|
weights on the whole real line*. :arXiv:`1410.5286`.
|
|
|
|
.. [townsend.trogdon.olver-2015]
|
|
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
|
*Fast computation of Gauss quadrature nodes and
|
|
weights on the whole real line*.
|
|
IMA Journal of Numerical Analysis
|
|
:doi:`10.1093/imanum/drv002`.
|
|
"""
|
|
#
|
|
# Author: Travis Oliphant 2000
|
|
# Updated Sep. 2003 (fixed bugs --- tested to be accurate)
|
|
|
|
# SciPy imports.
|
|
import numpy as np
|
|
from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around,
|
|
hstack, arccos, arange)
|
|
from scipy import linalg
|
|
from scipy.special import airy
|
|
|
|
# Local imports.
|
|
# There is no .pyi file for _specfun
|
|
from . import _specfun # type: ignore
|
|
from . import _ufuncs
|
|
_gam = _ufuncs.gamma
|
|
|
|
_polyfuns = ['legendre', 'chebyt', 'chebyu', 'chebyc', 'chebys',
|
|
'jacobi', 'laguerre', 'genlaguerre', 'hermite',
|
|
'hermitenorm', 'gegenbauer', 'sh_legendre', 'sh_chebyt',
|
|
'sh_chebyu', 'sh_jacobi']
|
|
|
|
# Correspondence between new and old names of root functions
|
|
_rootfuns_map = {'roots_legendre': 'p_roots',
|
|
'roots_chebyt': 't_roots',
|
|
'roots_chebyu': 'u_roots',
|
|
'roots_chebyc': 'c_roots',
|
|
'roots_chebys': 's_roots',
|
|
'roots_jacobi': 'j_roots',
|
|
'roots_laguerre': 'l_roots',
|
|
'roots_genlaguerre': 'la_roots',
|
|
'roots_hermite': 'h_roots',
|
|
'roots_hermitenorm': 'he_roots',
|
|
'roots_gegenbauer': 'cg_roots',
|
|
'roots_sh_legendre': 'ps_roots',
|
|
'roots_sh_chebyt': 'ts_roots',
|
|
'roots_sh_chebyu': 'us_roots',
|
|
'roots_sh_jacobi': 'js_roots'}
|
|
|
|
__all__ = _polyfuns + list(_rootfuns_map.keys())
|
|
|
|
|
|
class orthopoly1d(np.poly1d):
|
|
|
|
def __init__(self, roots, weights=None, hn=1.0, kn=1.0, wfunc=None,
|
|
limits=None, monic=False, eval_func=None):
|
|
equiv_weights = [weights[k] / wfunc(roots[k]) for
|
|
k in range(len(roots))]
|
|
mu = sqrt(hn)
|
|
if monic:
|
|
evf = eval_func
|
|
if evf:
|
|
knn = kn
|
|
def eval_func(x):
|
|
return evf(x) / knn
|
|
mu = mu / abs(kn)
|
|
kn = 1.0
|
|
|
|
# compute coefficients from roots, then scale
|
|
poly = np.poly1d(roots, r=True)
|
|
np.poly1d.__init__(self, poly.coeffs * float(kn))
|
|
|
|
self.weights = np.array(list(zip(roots, weights, equiv_weights)))
|
|
self.weight_func = wfunc
|
|
self.limits = limits
|
|
self.normcoef = mu
|
|
|
|
# Note: eval_func will be discarded on arithmetic
|
|
self._eval_func = eval_func
|
|
|
|
def __call__(self, v):
|
|
if self._eval_func and not isinstance(v, np.poly1d):
|
|
return self._eval_func(v)
|
|
else:
|
|
return np.poly1d.__call__(self, v)
|
|
|
|
def _scale(self, p):
|
|
if p == 1.0:
|
|
return
|
|
self._coeffs *= p
|
|
|
|
evf = self._eval_func
|
|
if evf:
|
|
self._eval_func = lambda x: evf(x) * p
|
|
self.normcoef *= p
|
|
|
|
|
|
def _gen_roots_and_weights(n, mu0, an_func, bn_func, f, df, symmetrize, mu):
|
|
"""[x,w] = gen_roots_and_weights(n,an_func,sqrt_bn_func,mu)
|
|
|
|
Returns the roots (x) of an nth order orthogonal polynomial,
|
|
and weights (w) to use in appropriate Gaussian quadrature with that
|
|
orthogonal polynomial.
|
|
|
|
The polynomials have the recurrence relation
|
|
P_n+1(x) = (x - A_n) P_n(x) - B_n P_n-1(x)
|
|
|
|
an_func(n) should return A_n
|
|
sqrt_bn_func(n) should return sqrt(B_n)
|
|
mu ( = h_0 ) is the integral of the weight over the orthogonal
|
|
interval
|
|
"""
|
|
k = np.arange(n, dtype='d')
|
|
c = np.zeros((2, n))
|
|
c[0,1:] = bn_func(k[1:])
|
|
c[1,:] = an_func(k)
|
|
x = linalg.eigvals_banded(c, overwrite_a_band=True)
|
|
|
|
# improve roots by one application of Newton's method
|
|
y = f(n, x)
|
|
dy = df(n, x)
|
|
x -= y/dy
|
|
|
|
# fm and dy may contain very large/small values, so we
|
|
# log-normalize them to maintain precision in the product fm*dy
|
|
fm = f(n-1, x)
|
|
log_fm = np.log(np.abs(fm))
|
|
log_dy = np.log(np.abs(dy))
|
|
fm /= np.exp((log_fm.max() + log_fm.min()) / 2.)
|
|
dy /= np.exp((log_dy.max() + log_dy.min()) / 2.)
|
|
w = 1.0 / (fm * dy)
|
|
|
|
if symmetrize:
|
|
w = (w + w[::-1]) / 2
|
|
x = (x - x[::-1]) / 2
|
|
|
|
w *= mu0 / w.sum()
|
|
|
|
if mu:
|
|
return x, w, mu0
|
|
else:
|
|
return x, w
|
|
|
|
# Jacobi Polynomials 1 P^(alpha,beta)_n(x)
|
|
|
|
|
|
def roots_jacobi(n, alpha, beta, mu=False):
|
|
r"""Gauss-Jacobi quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Jacobi
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Jacobi polynomial, :math:`P^{\alpha, \beta}_n(x)`. These sample
|
|
points and weights correctly integrate polynomials of degree
|
|
:math:`2n - 1` or less over the interval :math:`[-1, 1]` with
|
|
weight function :math:`w(x) = (1 - x)^{\alpha} (1 +
|
|
x)^{\beta}`. See 22.2.1 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
alpha : float
|
|
alpha must be > -1
|
|
beta : float
|
|
beta must be > -1
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError("n must be a positive integer.")
|
|
if alpha <= -1 or beta <= -1:
|
|
raise ValueError("alpha and beta must be greater than -1.")
|
|
|
|
if alpha == 0.0 and beta == 0.0:
|
|
return roots_legendre(m, mu)
|
|
if alpha == beta:
|
|
return roots_gegenbauer(m, alpha+0.5, mu)
|
|
|
|
if (alpha + beta) <= 1000:
|
|
mu0 = 2.0**(alpha+beta+1) * _ufuncs.beta(alpha+1, beta+1)
|
|
else:
|
|
# Avoid overflows in pow and beta for very large parameters
|
|
mu0 = np.exp((alpha + beta + 1) * np.log(2.0)
|
|
+ _ufuncs.betaln(alpha+1, beta+1))
|
|
a = alpha
|
|
b = beta
|
|
if a + b == 0.0:
|
|
def an_func(k):
|
|
return np.where(k == 0, (b - a) / (2 + a + b), 0.0)
|
|
else:
|
|
def an_func(k):
|
|
return np.where(
|
|
k == 0,
|
|
(b - a) / (2 + a + b),
|
|
(b * b - a * a) / ((2.0 * k + a + b) * (2.0 * k + a + b + 2))
|
|
)
|
|
|
|
def bn_func(k):
|
|
return (
|
|
2.0 / (2.0 * k + a + b)
|
|
* np.sqrt((k + a) * (k + b) / (2 * k + a + b + 1))
|
|
* np.where(k == 1, 1.0, np.sqrt(k * (k + a + b) / (2.0 * k + a + b - 1)))
|
|
)
|
|
|
|
def f(n, x):
|
|
return _ufuncs.eval_jacobi(n, a, b, x)
|
|
def df(n, x):
|
|
return 0.5 * (n + a + b + 1) * _ufuncs.eval_jacobi(n - 1, a + 1, b + 1, x)
|
|
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)
|
|
|
|
|
|
def jacobi(n, alpha, beta, monic=False):
|
|
r"""Jacobi polynomial.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
(1 - x^2)\frac{d^2}{dx^2}P_n^{(\alpha, \beta)}
|
|
+ (\beta - \alpha - (\alpha + \beta + 2)x)
|
|
\frac{d}{dx}P_n^{(\alpha, \beta)}
|
|
+ n(n + \alpha + \beta + 1)P_n^{(\alpha, \beta)} = 0
|
|
|
|
for :math:`\alpha, \beta > -1`; :math:`P_n^{(\alpha, \beta)}` is a
|
|
polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
alpha : float
|
|
Parameter, must be greater than -1.
|
|
beta : float
|
|
Parameter, must be greater than -1.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
P : orthopoly1d
|
|
Jacobi polynomial.
|
|
|
|
Notes
|
|
-----
|
|
For fixed :math:`\alpha, \beta`, the polynomials
|
|
:math:`P_n^{(\alpha, \beta)}` are orthogonal over :math:`[-1, 1]`
|
|
with weight function :math:`(1 - x)^\alpha(1 + x)^\beta`.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
The Jacobi polynomials satisfy the recurrence relation:
|
|
|
|
.. math::
|
|
P_n^{(\alpha, \beta-1)}(x) - P_n^{(\alpha-1, \beta)}(x)
|
|
= P_{n-1}^{(\alpha, \beta)}(x)
|
|
|
|
This can be verified, for example, for :math:`\alpha = \beta = 2`
|
|
and :math:`n = 1` over the interval :math:`[-1, 1]`:
|
|
|
|
>>> import numpy as np
|
|
>>> from scipy.special import jacobi
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> np.allclose(jacobi(0, 2, 2)(x),
|
|
... jacobi(1, 2, 1)(x) - jacobi(1, 1, 2)(x))
|
|
True
|
|
|
|
Plot of the Jacobi polynomial :math:`P_5^{(\alpha, -0.5)}` for
|
|
different values of :math:`\alpha`:
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-2.0, 2.0)
|
|
>>> ax.set_title(r'Jacobi polynomials $P_5^{(\alpha, -0.5)}$')
|
|
>>> for alpha in np.arange(0, 4, 1):
|
|
... ax.plot(x, jacobi(5, alpha, -0.5)(x), label=rf'$\alpha={alpha}$')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
def wfunc(x):
|
|
return (1 - x) ** alpha * (1 + x) ** beta
|
|
if n == 0:
|
|
return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
|
|
eval_func=np.ones_like)
|
|
x, w, mu = roots_jacobi(n, alpha, beta, mu=True)
|
|
ab1 = alpha + beta + 1.0
|
|
hn = 2**ab1 / (2 * n + ab1) * _gam(n + alpha + 1)
|
|
hn *= _gam(n + beta + 1.0) / _gam(n + 1) / _gam(n + ab1)
|
|
kn = _gam(2 * n + ab1) / 2.0**n / _gam(n + 1) / _gam(n + ab1)
|
|
# here kn = coefficient on x^n term
|
|
p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
|
|
lambda x: _ufuncs.eval_jacobi(n, alpha, beta, x))
|
|
return p
|
|
|
|
# Jacobi Polynomials shifted G_n(p,q,x)
|
|
|
|
|
|
def roots_sh_jacobi(n, p1, q1, mu=False):
|
|
"""Gauss-Jacobi (shifted) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Jacobi (shifted)
|
|
quadrature. The sample points are the roots of the nth degree
|
|
shifted Jacobi polynomial, :math:`G^{p,q}_n(x)`. These sample
|
|
points and weights correctly integrate polynomials of degree
|
|
:math:`2n - 1` or less over the interval :math:`[0, 1]` with
|
|
weight function :math:`w(x) = (1 - x)^{p-q} x^{q-1}`. See 22.2.2
|
|
in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
p1 : float
|
|
(p1 - q1) must be > -1
|
|
q1 : float
|
|
q1 must be > 0
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
if (p1-q1) <= -1 or q1 <= 0:
|
|
message = "(p - q) must be greater than -1, and q must be greater than 0."
|
|
raise ValueError(message)
|
|
x, w, m = roots_jacobi(n, p1-q1, q1-1, True)
|
|
x = (x + 1) / 2
|
|
scale = 2.0**p1
|
|
w /= scale
|
|
m /= scale
|
|
if mu:
|
|
return x, w, m
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def sh_jacobi(n, p, q, monic=False):
|
|
r"""Shifted Jacobi polynomial.
|
|
|
|
Defined by
|
|
|
|
.. math::
|
|
|
|
G_n^{(p, q)}(x)
|
|
= \binom{2n + p - 1}{n}^{-1}P_n^{(p - q, q - 1)}(2x - 1),
|
|
|
|
where :math:`P_n^{(\cdot, \cdot)}` is the nth Jacobi polynomial.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
p : float
|
|
Parameter, must have :math:`p > q - 1`.
|
|
q : float
|
|
Parameter, must be greater than 0.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
G : orthopoly1d
|
|
Shifted Jacobi polynomial.
|
|
|
|
Notes
|
|
-----
|
|
For fixed :math:`p, q`, the polynomials :math:`G_n^{(p, q)}` are
|
|
orthogonal over :math:`[0, 1]` with weight function :math:`(1 -
|
|
x)^{p - q}x^{q - 1}`.
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
def wfunc(x):
|
|
return (1.0 - x) ** (p - q) * x ** (q - 1.0)
|
|
if n == 0:
|
|
return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
|
|
eval_func=np.ones_like)
|
|
n1 = n
|
|
x, w = roots_sh_jacobi(n1, p, q)
|
|
hn = _gam(n + 1) * _gam(n + q) * _gam(n + p) * _gam(n + p - q + 1)
|
|
hn /= (2 * n + p) * (_gam(2 * n + p)**2)
|
|
# kn = 1.0 in standard form so monic is redundant. Kept for compatibility.
|
|
kn = 1.0
|
|
pp = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(0, 1), monic=monic,
|
|
eval_func=lambda x: _ufuncs.eval_sh_jacobi(n, p, q, x))
|
|
return pp
|
|
|
|
# Generalized Laguerre L^(alpha)_n(x)
|
|
|
|
|
|
def roots_genlaguerre(n, alpha, mu=False):
|
|
r"""Gauss-generalized Laguerre quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-generalized
|
|
Laguerre quadrature. The sample points are the roots of the nth
|
|
degree generalized Laguerre polynomial, :math:`L^{\alpha}_n(x)`.
|
|
These sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[0,
|
|
\infty]` with weight function :math:`w(x) = x^{\alpha}
|
|
e^{-x}`. See 22.3.9 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
alpha : float
|
|
alpha must be > -1
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError("n must be a positive integer.")
|
|
if alpha < -1:
|
|
raise ValueError("alpha must be greater than -1.")
|
|
|
|
mu0 = _ufuncs.gamma(alpha + 1)
|
|
|
|
if m == 1:
|
|
x = np.array([alpha+1.0], 'd')
|
|
w = np.array([mu0], 'd')
|
|
if mu:
|
|
return x, w, mu0
|
|
else:
|
|
return x, w
|
|
|
|
def an_func(k):
|
|
return 2 * k + alpha + 1
|
|
def bn_func(k):
|
|
return -np.sqrt(k * (k + alpha))
|
|
def f(n, x):
|
|
return _ufuncs.eval_genlaguerre(n, alpha, x)
|
|
def df(n, x):
|
|
return (n * _ufuncs.eval_genlaguerre(n, alpha, x)
|
|
- (n + alpha) * _ufuncs.eval_genlaguerre(n - 1, alpha, x)) / x
|
|
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)
|
|
|
|
|
|
def genlaguerre(n, alpha, monic=False):
|
|
r"""Generalized (associated) Laguerre polynomial.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
x\frac{d^2}{dx^2}L_n^{(\alpha)}
|
|
+ (\alpha + 1 - x)\frac{d}{dx}L_n^{(\alpha)}
|
|
+ nL_n^{(\alpha)} = 0,
|
|
|
|
where :math:`\alpha > -1`; :math:`L_n^{(\alpha)}` is a polynomial
|
|
of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
alpha : float
|
|
Parameter, must be greater than -1.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
L : orthopoly1d
|
|
Generalized Laguerre polynomial.
|
|
|
|
See Also
|
|
--------
|
|
laguerre : Laguerre polynomial.
|
|
hyp1f1 : confluent hypergeometric function
|
|
|
|
Notes
|
|
-----
|
|
For fixed :math:`\alpha`, the polynomials :math:`L_n^{(\alpha)}`
|
|
are orthogonal over :math:`[0, \infty)` with weight function
|
|
:math:`e^{-x}x^\alpha`.
|
|
|
|
The Laguerre polynomials are the special case where :math:`\alpha
|
|
= 0`.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
The generalized Laguerre polynomials are closely related to the confluent
|
|
hypergeometric function :math:`{}_1F_1`:
|
|
|
|
.. math::
|
|
L_n^{(\alpha)} = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha +1, x)
|
|
|
|
This can be verified, for example, for :math:`n = \alpha = 3` over the
|
|
interval :math:`[-1, 1]`:
|
|
|
|
>>> import numpy as np
|
|
>>> from scipy.special import binom
|
|
>>> from scipy.special import genlaguerre
|
|
>>> from scipy.special import hyp1f1
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> np.allclose(genlaguerre(3, 3)(x), binom(6, 3) * hyp1f1(-3, 4, x))
|
|
True
|
|
|
|
This is the plot of the generalized Laguerre polynomials
|
|
:math:`L_3^{(\alpha)}` for some values of :math:`\alpha`:
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.arange(-4.0, 12.0, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-5.0, 10.0)
|
|
>>> ax.set_title(r'Generalized Laguerre polynomials $L_3^{\alpha}$')
|
|
>>> for alpha in np.arange(0, 5):
|
|
... ax.plot(x, genlaguerre(3, alpha)(x), label=rf'$L_3^{(alpha)}$')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if alpha <= -1:
|
|
raise ValueError("alpha must be > -1")
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_genlaguerre(n1, alpha)
|
|
def wfunc(x):
|
|
return exp(-x) * x ** alpha
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = _gam(n + alpha + 1) / _gam(n + 1)
|
|
kn = (-1)**n / _gam(n + 1)
|
|
p = orthopoly1d(x, w, hn, kn, wfunc, (0, inf), monic,
|
|
lambda x: _ufuncs.eval_genlaguerre(n, alpha, x))
|
|
return p
|
|
|
|
# Laguerre L_n(x)
|
|
|
|
|
|
def roots_laguerre(n, mu=False):
|
|
r"""Gauss-Laguerre quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Laguerre
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Laguerre polynomial, :math:`L_n(x)`. These sample points and
|
|
weights correctly integrate polynomials of degree :math:`2n - 1`
|
|
or less over the interval :math:`[0, \infty]` with weight function
|
|
:math:`w(x) = e^{-x}`. See 22.2.13 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
numpy.polynomial.laguerre.laggauss
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
return roots_genlaguerre(n, 0.0, mu=mu)
|
|
|
|
|
|
def laguerre(n, monic=False):
|
|
r"""Laguerre polynomial.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
x\frac{d^2}{dx^2}L_n + (1 - x)\frac{d}{dx}L_n + nL_n = 0;
|
|
|
|
:math:`L_n` is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
L : orthopoly1d
|
|
Laguerre Polynomial.
|
|
|
|
See Also
|
|
--------
|
|
genlaguerre : Generalized (associated) Laguerre polynomial.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`L_n` are orthogonal over :math:`[0,
|
|
\infty)` with weight function :math:`e^{-x}`.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
The Laguerre polynomials :math:`L_n` are the special case
|
|
:math:`\alpha = 0` of the generalized Laguerre polynomials
|
|
:math:`L_n^{(\alpha)}`.
|
|
Let's verify it on the interval :math:`[-1, 1]`:
|
|
|
|
>>> import numpy as np
|
|
>>> from scipy.special import genlaguerre
|
|
>>> from scipy.special import laguerre
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> np.allclose(genlaguerre(3, 0)(x), laguerre(3)(x))
|
|
True
|
|
|
|
The polynomials :math:`L_n` also satisfy the recurrence relation:
|
|
|
|
.. math::
|
|
(n + 1)L_{n+1}(x) = (2n +1 -x)L_n(x) - nL_{n-1}(x)
|
|
|
|
This can be easily checked on :math:`[0, 1]` for :math:`n = 3`:
|
|
|
|
>>> x = np.arange(0.0, 1.0, 0.01)
|
|
>>> np.allclose(4 * laguerre(4)(x),
|
|
... (7 - x) * laguerre(3)(x) - 3 * laguerre(2)(x))
|
|
True
|
|
|
|
This is the plot of the first few Laguerre polynomials :math:`L_n`:
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.arange(-1.0, 5.0, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-5.0, 5.0)
|
|
>>> ax.set_title(r'Laguerre polynomials $L_n$')
|
|
>>> for n in np.arange(0, 5):
|
|
... ax.plot(x, laguerre(n)(x), label=rf'$L_{n}$')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_laguerre(n1)
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = 1.0
|
|
kn = (-1)**n / _gam(n + 1)
|
|
p = orthopoly1d(x, w, hn, kn, lambda x: exp(-x), (0, inf), monic,
|
|
lambda x: _ufuncs.eval_laguerre(n, x))
|
|
return p
|
|
|
|
# Hermite 1 H_n(x)
|
|
|
|
|
|
def roots_hermite(n, mu=False):
|
|
r"""Gauss-Hermite (physicist's) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Hermite
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Hermite polynomial, :math:`H_n(x)`. These sample points and
|
|
weights correctly integrate polynomials of degree :math:`2n - 1`
|
|
or less over the interval :math:`[-\infty, \infty]` with weight
|
|
function :math:`w(x) = e^{-x^2}`. See 22.2.14 in [AS]_ for
|
|
details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
numpy.polynomial.hermite.hermgauss
|
|
roots_hermitenorm
|
|
|
|
Notes
|
|
-----
|
|
For small n up to 150 a modified version of the Golub-Welsch
|
|
algorithm is used. Nodes are computed from the eigenvalue
|
|
problem and improved by one step of a Newton iteration.
|
|
The weights are computed from the well-known analytical formula.
|
|
|
|
For n larger than 150 an optimal asymptotic algorithm is applied
|
|
which computes nodes and weights in a numerically stable manner.
|
|
The algorithm has linear runtime making computation for very
|
|
large n (several thousand or more) feasible.
|
|
|
|
References
|
|
----------
|
|
.. [townsend.trogdon.olver-2014]
|
|
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
|
*Fast computation of Gauss quadrature nodes and
|
|
weights on the whole real line*. :arXiv:`1410.5286`.
|
|
.. [townsend.trogdon.olver-2015]
|
|
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
|
*Fast computation of Gauss quadrature nodes and
|
|
weights on the whole real line*.
|
|
IMA Journal of Numerical Analysis
|
|
:doi:`10.1093/imanum/drv002`.
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError("n must be a positive integer.")
|
|
|
|
mu0 = np.sqrt(np.pi)
|
|
if n <= 150:
|
|
def an_func(k):
|
|
return 0.0 * k
|
|
def bn_func(k):
|
|
return np.sqrt(k / 2.0)
|
|
f = _ufuncs.eval_hermite
|
|
def df(n, x):
|
|
return 2.0 * n * _ufuncs.eval_hermite(n - 1, x)
|
|
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
|
else:
|
|
nodes, weights = _roots_hermite_asy(m)
|
|
if mu:
|
|
return nodes, weights, mu0
|
|
else:
|
|
return nodes, weights
|
|
|
|
|
|
def _compute_tauk(n, k, maxit=5):
|
|
"""Helper function for Tricomi initial guesses
|
|
|
|
For details, see formula 3.1 in lemma 3.1 in the
|
|
original paper.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Quadrature order
|
|
k : ndarray of type int
|
|
Index of roots :math:`\tau_k` to compute
|
|
maxit : int
|
|
Number of Newton maxit performed, the default
|
|
value of 5 is sufficient.
|
|
|
|
Returns
|
|
-------
|
|
tauk : ndarray
|
|
Roots of equation 3.1
|
|
|
|
See Also
|
|
--------
|
|
initial_nodes_a
|
|
roots_hermite_asy
|
|
"""
|
|
a = n % 2 - 0.5
|
|
c = (4.0*floor(n/2.0) - 4.0*k + 3.0)*pi / (4.0*floor(n/2.0) + 2.0*a + 2.0)
|
|
def f(x):
|
|
return x - sin(x) - c
|
|
def df(x):
|
|
return 1.0 - cos(x)
|
|
xi = 0.5*pi
|
|
for i in range(maxit):
|
|
xi = xi - f(xi)/df(xi)
|
|
return xi
|
|
|
|
|
|
def _initial_nodes_a(n, k):
|
|
r"""Tricomi initial guesses
|
|
|
|
Computes an initial approximation to the square of the `k`-th
|
|
(positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
|
|
of order :math:`n`. The formula is the one from lemma 3.1 in the
|
|
original paper. The guesses are accurate except in the region
|
|
near :math:`\sqrt{2n + 1}`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Quadrature order
|
|
k : ndarray of type int
|
|
Index of roots to compute
|
|
|
|
Returns
|
|
-------
|
|
xksq : ndarray
|
|
Square of the approximate roots
|
|
|
|
See Also
|
|
--------
|
|
initial_nodes
|
|
roots_hermite_asy
|
|
"""
|
|
tauk = _compute_tauk(n, k)
|
|
sigk = cos(0.5*tauk)**2
|
|
a = n % 2 - 0.5
|
|
nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
|
|
# Initial approximation of Hermite roots (square)
|
|
xksq = nu*sigk - 1.0/(3.0*nu) * (5.0/(4.0*(1.0-sigk)**2) - 1.0/(1.0-sigk) - 0.25)
|
|
return xksq
|
|
|
|
|
|
def _initial_nodes_b(n, k):
|
|
r"""Gatteschi initial guesses
|
|
|
|
Computes an initial approximation to the square of the kth
|
|
(positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
|
|
of order :math:`n`. The formula is the one from lemma 3.2 in the
|
|
original paper. The guesses are accurate in the region just
|
|
below :math:`\sqrt{2n + 1}`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Quadrature order
|
|
k : ndarray of type int
|
|
Index of roots to compute
|
|
|
|
Returns
|
|
-------
|
|
xksq : ndarray
|
|
Square of the approximate root
|
|
|
|
See Also
|
|
--------
|
|
initial_nodes
|
|
roots_hermite_asy
|
|
"""
|
|
a = n % 2 - 0.5
|
|
nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
|
|
# Airy roots by approximation
|
|
ak = _specfun.airyzo(k.max(), 1)[0][::-1]
|
|
# Initial approximation of Hermite roots (square)
|
|
xksq = (nu
|
|
+ 2.0**(2.0/3.0) * ak * nu**(1.0/3.0)
|
|
+ 1.0/5.0 * 2.0**(4.0/3.0) * ak**2 * nu**(-1.0/3.0)
|
|
+ (9.0/140.0 - 12.0/175.0 * ak**3) * nu**(-1.0)
|
|
+ (16.0/1575.0 * ak + 92.0/7875.0 * ak**4) * 2.0**(2.0/3.0) * nu**(-5.0/3.0)
|
|
- (15152.0/3031875.0 * ak**5 + 1088.0/121275.0 * ak**2)
|
|
* 2.0**(1.0/3.0) * nu**(-7.0/3.0))
|
|
return xksq
|
|
|
|
|
|
def _initial_nodes(n):
|
|
"""Initial guesses for the Hermite roots
|
|
|
|
Computes an initial approximation to the non-negative
|
|
roots :math:`x_k` of the Hermite polynomial :math:`H_n`
|
|
of order :math:`n`. The Tricomi and Gatteschi initial
|
|
guesses are used in the region where they are accurate.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Quadrature order
|
|
|
|
Returns
|
|
-------
|
|
xk : ndarray
|
|
Approximate roots
|
|
|
|
See Also
|
|
--------
|
|
roots_hermite_asy
|
|
"""
|
|
# Turnover point
|
|
# linear polynomial fit to error of 10, 25, 40, ..., 1000 point rules
|
|
fit = 0.49082003*n - 4.37859653
|
|
turnover = around(fit).astype(int)
|
|
# Compute all approximations
|
|
ia = arange(1, int(floor(n*0.5)+1))
|
|
ib = ia[::-1]
|
|
xasq = _initial_nodes_a(n, ia[:turnover+1])
|
|
xbsq = _initial_nodes_b(n, ib[turnover+1:])
|
|
# Combine
|
|
iv = sqrt(hstack([xasq, xbsq]))
|
|
# Central node is always zero
|
|
if n % 2 == 1:
|
|
iv = hstack([0.0, iv])
|
|
return iv
|
|
|
|
|
|
def _pbcf(n, theta):
|
|
r"""Asymptotic series expansion of parabolic cylinder function
|
|
|
|
The implementation is based on sections 3.2 and 3.3 from the
|
|
original paper. Compared to the published version this code
|
|
adds one more term to the asymptotic series. The detailed
|
|
formulas can be found at [parabolic-asymptotics]_. The evaluation
|
|
is done in a transformed variable :math:`\theta := \arccos(t)`
|
|
where :math:`t := x / \mu` and :math:`\mu := \sqrt{2n + 1}`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Quadrature order
|
|
theta : ndarray
|
|
Transformed position variable
|
|
|
|
Returns
|
|
-------
|
|
U : ndarray
|
|
Value of the parabolic cylinder function :math:`U(a, \theta)`.
|
|
Ud : ndarray
|
|
Value of the derivative :math:`U^{\prime}(a, \theta)` of
|
|
the parabolic cylinder function.
|
|
|
|
See Also
|
|
--------
|
|
roots_hermite_asy
|
|
|
|
References
|
|
----------
|
|
.. [parabolic-asymptotics]
|
|
https://dlmf.nist.gov/12.10#vii
|
|
"""
|
|
st = sin(theta)
|
|
ct = cos(theta)
|
|
# https://dlmf.nist.gov/12.10#vii
|
|
mu = 2.0*n + 1.0
|
|
# https://dlmf.nist.gov/12.10#E23
|
|
eta = 0.5*theta - 0.5*st*ct
|
|
# https://dlmf.nist.gov/12.10#E39
|
|
zeta = -(3.0*eta/2.0) ** (2.0/3.0)
|
|
# https://dlmf.nist.gov/12.10#E40
|
|
phi = (-zeta / st**2) ** (0.25)
|
|
# Coefficients
|
|
# https://dlmf.nist.gov/12.10#E43
|
|
a0 = 1.0
|
|
a1 = 0.10416666666666666667
|
|
a2 = 0.08355034722222222222
|
|
a3 = 0.12822657455632716049
|
|
a4 = 0.29184902646414046425
|
|
a5 = 0.88162726744375765242
|
|
b0 = 1.0
|
|
b1 = -0.14583333333333333333
|
|
b2 = -0.09874131944444444444
|
|
b3 = -0.14331205391589506173
|
|
b4 = -0.31722720267841354810
|
|
b5 = -0.94242914795712024914
|
|
# Polynomials
|
|
# https://dlmf.nist.gov/12.10#E9
|
|
# https://dlmf.nist.gov/12.10#E10
|
|
ctp = ct ** arange(16).reshape((-1,1))
|
|
u0 = 1.0
|
|
u1 = (1.0*ctp[3,:] - 6.0*ct) / 24.0
|
|
u2 = (-9.0*ctp[4,:] + 249.0*ctp[2,:] + 145.0) / 1152.0
|
|
u3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 28287.0*ctp[5,:]
|
|
- 151995.0*ctp[3,:] - 259290.0*ct) / 414720.0
|
|
u4 = (72756.0*ctp[10,:] - 321339.0*ctp[8,:] - 154982.0*ctp[6,:]
|
|
+ 50938215.0*ctp[4,:] + 122602962.0*ctp[2,:] + 12773113.0) / 39813120.0
|
|
u5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 1994971575.0*ctp[11,:]
|
|
- 3630137104.0*ctp[9,:] + 4433574213.0*ctp[7,:] - 37370295816.0*ctp[5,:]
|
|
- 119582875013.0*ctp[3,:] - 34009066266.0*ct) / 6688604160.0
|
|
v0 = 1.0
|
|
v1 = (1.0*ctp[3,:] + 6.0*ct) / 24.0
|
|
v2 = (15.0*ctp[4,:] - 327.0*ctp[2,:] - 143.0) / 1152.0
|
|
v3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 36387.0*ctp[5,:]
|
|
+ 238425.0*ctp[3,:] + 259290.0*ct) / 414720.0
|
|
v4 = (-121260.0*ctp[10,:] + 551733.0*ctp[8,:] - 151958.0*ctp[6,:]
|
|
- 57484425.0*ctp[4,:] - 132752238.0*ctp[2,:] - 12118727) / 39813120.0
|
|
v5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 2025529095.0*ctp[11,:]
|
|
- 3750839308.0*ctp[9,:] + 3832454253.0*ctp[7,:] + 35213253348.0*ctp[5,:]
|
|
+ 130919230435.0*ctp[3,:] + 34009066266*ct) / 6688604160.0
|
|
# Airy Evaluation (Bi and Bip unused)
|
|
Ai, Aip, Bi, Bip = airy(mu**(4.0/6.0) * zeta)
|
|
# Prefactor for U
|
|
P = 2.0*sqrt(pi) * mu**(1.0/6.0) * phi
|
|
# Terms for U
|
|
# https://dlmf.nist.gov/12.10#E42
|
|
phip = phi ** arange(6, 31, 6).reshape((-1,1))
|
|
A0 = b0*u0
|
|
A1 = (b2*u0 + phip[0,:]*b1*u1 + phip[1,:]*b0*u2) / zeta**3
|
|
A2 = (b4*u0 + phip[0,:]*b3*u1 + phip[1,:]*b2*u2 + phip[2,:]*b1*u3
|
|
+ phip[3,:]*b0*u4) / zeta**6
|
|
B0 = -(a1*u0 + phip[0,:]*a0*u1) / zeta**2
|
|
B1 = -(a3*u0 + phip[0,:]*a2*u1 + phip[1,:]*a1*u2 + phip[2,:]*a0*u3) / zeta**5
|
|
B2 = -(a5*u0 + phip[0,:]*a4*u1 + phip[1,:]*a3*u2 + phip[2,:]*a2*u3
|
|
+ phip[3,:]*a1*u4 + phip[4,:]*a0*u5) / zeta**8
|
|
# U
|
|
# https://dlmf.nist.gov/12.10#E35
|
|
U = P * (Ai * (A0 + A1/mu**2.0 + A2/mu**4.0) +
|
|
Aip * (B0 + B1/mu**2.0 + B2/mu**4.0) / mu**(8.0/6.0))
|
|
# Prefactor for derivative of U
|
|
Pd = sqrt(2.0*pi) * mu**(2.0/6.0) / phi
|
|
# Terms for derivative of U
|
|
# https://dlmf.nist.gov/12.10#E46
|
|
C0 = -(b1*v0 + phip[0,:]*b0*v1) / zeta
|
|
C1 = -(b3*v0 + phip[0,:]*b2*v1 + phip[1,:]*b1*v2 + phip[2,:]*b0*v3) / zeta**4
|
|
C2 = -(b5*v0 + phip[0,:]*b4*v1 + phip[1,:]*b3*v2 + phip[2,:]*b2*v3
|
|
+ phip[3,:]*b1*v4 + phip[4,:]*b0*v5) / zeta**7
|
|
D0 = a0*v0
|
|
D1 = (a2*v0 + phip[0,:]*a1*v1 + phip[1,:]*a0*v2) / zeta**3
|
|
D2 = (a4*v0 + phip[0,:]*a3*v1 + phip[1,:]*a2*v2 + phip[2,:]*a1*v3
|
|
+ phip[3,:]*a0*v4) / zeta**6
|
|
# Derivative of U
|
|
# https://dlmf.nist.gov/12.10#E36
|
|
Ud = Pd * (Ai * (C0 + C1/mu**2.0 + C2/mu**4.0) / mu**(4.0/6.0) +
|
|
Aip * (D0 + D1/mu**2.0 + D2/mu**4.0))
|
|
return U, Ud
|
|
|
|
|
|
def _newton(n, x_initial, maxit=5):
|
|
"""Newton iteration for polishing the asymptotic approximation
|
|
to the zeros of the Hermite polynomials.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Quadrature order
|
|
x_initial : ndarray
|
|
Initial guesses for the roots
|
|
maxit : int
|
|
Maximal number of Newton iterations.
|
|
The default 5 is sufficient, usually
|
|
only one or two steps are needed.
|
|
|
|
Returns
|
|
-------
|
|
nodes : ndarray
|
|
Quadrature nodes
|
|
weights : ndarray
|
|
Quadrature weights
|
|
|
|
See Also
|
|
--------
|
|
roots_hermite_asy
|
|
"""
|
|
# Variable transformation
|
|
mu = sqrt(2.0*n + 1.0)
|
|
t = x_initial / mu
|
|
theta = arccos(t)
|
|
# Newton iteration
|
|
for i in range(maxit):
|
|
u, ud = _pbcf(n, theta)
|
|
dtheta = u / (sqrt(2.0) * mu * sin(theta) * ud)
|
|
theta = theta + dtheta
|
|
if max(abs(dtheta)) < 1e-14:
|
|
break
|
|
# Undo variable transformation
|
|
x = mu * cos(theta)
|
|
# Central node is always zero
|
|
if n % 2 == 1:
|
|
x[0] = 0.0
|
|
# Compute weights
|
|
w = exp(-x**2) / (2.0*ud**2)
|
|
return x, w
|
|
|
|
|
|
def _roots_hermite_asy(n):
|
|
r"""Gauss-Hermite (physicist's) quadrature for large n.
|
|
|
|
Computes the sample points and weights for Gauss-Hermite quadrature.
|
|
The sample points are the roots of the nth degree Hermite polynomial,
|
|
:math:`H_n(x)`. These sample points and weights correctly integrate
|
|
polynomials of degree :math:`2n - 1` or less over the interval
|
|
:math:`[-\infty, \infty]` with weight function :math:`f(x) = e^{-x^2}`.
|
|
|
|
This method relies on asymptotic expansions which work best for n > 150.
|
|
The algorithm has linear runtime making computation for very large n
|
|
feasible.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
|
|
Returns
|
|
-------
|
|
nodes : ndarray
|
|
Quadrature nodes
|
|
weights : ndarray
|
|
Quadrature weights
|
|
|
|
See Also
|
|
--------
|
|
roots_hermite
|
|
|
|
References
|
|
----------
|
|
.. [townsend.trogdon.olver-2014]
|
|
Townsend, A. and Trogdon, T. and Olver, S. (2014)
|
|
*Fast computation of Gauss quadrature nodes and
|
|
weights on the whole real line*. :arXiv:`1410.5286`.
|
|
|
|
.. [townsend.trogdon.olver-2015]
|
|
Townsend, A. and Trogdon, T. and Olver, S. (2015)
|
|
*Fast computation of Gauss quadrature nodes and
|
|
weights on the whole real line*.
|
|
IMA Journal of Numerical Analysis
|
|
:doi:`10.1093/imanum/drv002`.
|
|
"""
|
|
iv = _initial_nodes(n)
|
|
nodes, weights = _newton(n, iv)
|
|
# Combine with negative parts
|
|
if n % 2 == 0:
|
|
nodes = hstack([-nodes[::-1], nodes])
|
|
weights = hstack([weights[::-1], weights])
|
|
else:
|
|
nodes = hstack([-nodes[-1:0:-1], nodes])
|
|
weights = hstack([weights[-1:0:-1], weights])
|
|
# Scale weights
|
|
weights *= sqrt(pi) / sum(weights)
|
|
return nodes, weights
|
|
|
|
|
|
def hermite(n, monic=False):
|
|
r"""Physicist's Hermite polynomial.
|
|
|
|
Defined by
|
|
|
|
.. math::
|
|
|
|
H_n(x) = (-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2};
|
|
|
|
:math:`H_n` is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
H : orthopoly1d
|
|
Hermite polynomial.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`H_n` are orthogonal over :math:`(-\infty,
|
|
\infty)` with weight function :math:`e^{-x^2}`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> import numpy as np
|
|
|
|
>>> p_monic = special.hermite(3, monic=True)
|
|
>>> p_monic
|
|
poly1d([ 1. , 0. , -1.5, 0. ])
|
|
>>> p_monic(1)
|
|
-0.49999999999999983
|
|
>>> x = np.linspace(-3, 3, 400)
|
|
>>> y = p_monic(x)
|
|
>>> plt.plot(x, y)
|
|
>>> plt.title("Monic Hermite polynomial of degree 3")
|
|
>>> plt.xlabel("x")
|
|
>>> plt.ylabel("H_3(x)")
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_hermite(n1)
|
|
def wfunc(x):
|
|
return exp(-x * x)
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = 2**n * _gam(n + 1) * sqrt(pi)
|
|
kn = 2**n
|
|
p = orthopoly1d(x, w, hn, kn, wfunc, (-inf, inf), monic,
|
|
lambda x: _ufuncs.eval_hermite(n, x))
|
|
return p
|
|
|
|
# Hermite 2 He_n(x)
|
|
|
|
|
|
def roots_hermitenorm(n, mu=False):
|
|
r"""Gauss-Hermite (statistician's) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Hermite
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Hermite polynomial, :math:`He_n(x)`. These sample points and
|
|
weights correctly integrate polynomials of degree :math:`2n - 1`
|
|
or less over the interval :math:`[-\infty, \infty]` with weight
|
|
function :math:`w(x) = e^{-x^2/2}`. See 22.2.15 in [AS]_ for more
|
|
details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
numpy.polynomial.hermite_e.hermegauss
|
|
|
|
Notes
|
|
-----
|
|
For small n up to 150 a modified version of the Golub-Welsch
|
|
algorithm is used. Nodes are computed from the eigenvalue
|
|
problem and improved by one step of a Newton iteration.
|
|
The weights are computed from the well-known analytical formula.
|
|
|
|
For n larger than 150 an optimal asymptotic algorithm is used
|
|
which computes nodes and weights in a numerical stable manner.
|
|
The algorithm has linear runtime making computation for very
|
|
large n (several thousand or more) feasible.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError("n must be a positive integer.")
|
|
|
|
mu0 = np.sqrt(2.0*np.pi)
|
|
if n <= 150:
|
|
def an_func(k):
|
|
return 0.0 * k
|
|
def bn_func(k):
|
|
return np.sqrt(k)
|
|
f = _ufuncs.eval_hermitenorm
|
|
def df(n, x):
|
|
return n * _ufuncs.eval_hermitenorm(n - 1, x)
|
|
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
|
else:
|
|
nodes, weights = _roots_hermite_asy(m)
|
|
# Transform
|
|
nodes *= sqrt(2)
|
|
weights *= sqrt(2)
|
|
if mu:
|
|
return nodes, weights, mu0
|
|
else:
|
|
return nodes, weights
|
|
|
|
|
|
def hermitenorm(n, monic=False):
|
|
r"""Normalized (probabilist's) Hermite polynomial.
|
|
|
|
Defined by
|
|
|
|
.. math::
|
|
|
|
He_n(x) = (-1)^ne^{x^2/2}\frac{d^n}{dx^n}e^{-x^2/2};
|
|
|
|
:math:`He_n` is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
He : orthopoly1d
|
|
Hermite polynomial.
|
|
|
|
Notes
|
|
-----
|
|
|
|
The polynomials :math:`He_n` are orthogonal over :math:`(-\infty,
|
|
\infty)` with weight function :math:`e^{-x^2/2}`.
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_hermitenorm(n1)
|
|
def wfunc(x):
|
|
return exp(-x * x / 2.0)
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = sqrt(2 * pi) * _gam(n + 1)
|
|
kn = 1.0
|
|
p = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(-inf, inf), monic=monic,
|
|
eval_func=lambda x: _ufuncs.eval_hermitenorm(n, x))
|
|
return p
|
|
|
|
# The remainder of the polynomials can be derived from the ones above.
|
|
|
|
# Ultraspherical (Gegenbauer) C^(alpha)_n(x)
|
|
|
|
|
|
def roots_gegenbauer(n, alpha, mu=False):
|
|
r"""Gauss-Gegenbauer quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Gegenbauer
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Gegenbauer polynomial, :math:`C^{\alpha}_n(x)`. These sample
|
|
points and weights correctly integrate polynomials of degree
|
|
:math:`2n - 1` or less over the interval :math:`[-1, 1]` with
|
|
weight function :math:`w(x) = (1 - x^2)^{\alpha - 1/2}`. See
|
|
22.2.3 in [AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
alpha : float
|
|
alpha must be > -0.5
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError("n must be a positive integer.")
|
|
if alpha < -0.5:
|
|
raise ValueError("alpha must be greater than -0.5.")
|
|
elif alpha == 0.0:
|
|
# C(n,0,x) == 0 uniformly, however, as alpha->0, C(n,alpha,x)->T(n,x)
|
|
# strictly, we should just error out here, since the roots are not
|
|
# really defined, but we used to return something useful, so let's
|
|
# keep doing so.
|
|
return roots_chebyt(n, mu)
|
|
|
|
if alpha <= 170:
|
|
mu0 = (np.sqrt(np.pi) * _ufuncs.gamma(alpha + 0.5)) \
|
|
/ _ufuncs.gamma(alpha + 1)
|
|
else:
|
|
# For large alpha we use a Taylor series expansion around inf,
|
|
# expressed as a 6th order polynomial of a^-1 and using Horner's
|
|
# method to minimize computation and maximize precision
|
|
inv_alpha = 1. / alpha
|
|
coeffs = np.array([0.000207186, -0.00152206, -0.000640869,
|
|
0.00488281, 0.0078125, -0.125, 1.])
|
|
mu0 = coeffs[0]
|
|
for term in range(1, len(coeffs)):
|
|
mu0 = mu0 * inv_alpha + coeffs[term]
|
|
mu0 = mu0 * np.sqrt(np.pi / alpha)
|
|
def an_func(k):
|
|
return 0.0 * k
|
|
def bn_func(k):
|
|
return np.sqrt(k * (k + 2 * alpha - 1) / (4 * (k + alpha) * (k + alpha - 1)))
|
|
def f(n, x):
|
|
return _ufuncs.eval_gegenbauer(n, alpha, x)
|
|
def df(n, x):
|
|
return (
|
|
-n * x * _ufuncs.eval_gegenbauer(n, alpha, x)
|
|
+ (n + 2 * alpha - 1) * _ufuncs.eval_gegenbauer(n - 1, alpha, x)
|
|
) / (1 - x ** 2)
|
|
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
|
|
|
|
|
def gegenbauer(n, alpha, monic=False):
|
|
r"""Gegenbauer (ultraspherical) polynomial.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
(1 - x^2)\frac{d^2}{dx^2}C_n^{(\alpha)}
|
|
- (2\alpha + 1)x\frac{d}{dx}C_n^{(\alpha)}
|
|
+ n(n + 2\alpha)C_n^{(\alpha)} = 0
|
|
|
|
for :math:`\alpha > -1/2`; :math:`C_n^{(\alpha)}` is a polynomial
|
|
of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
alpha : float
|
|
Parameter, must be greater than -0.5.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
C : orthopoly1d
|
|
Gegenbauer polynomial.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`C_n^{(\alpha)}` are orthogonal over
|
|
:math:`[-1,1]` with weight function :math:`(1 - x^2)^{(\alpha -
|
|
1/2)}`.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
We can initialize a variable ``p`` as a Gegenbauer polynomial using the
|
|
`gegenbauer` function and evaluate at a point ``x = 1``.
|
|
|
|
>>> p = special.gegenbauer(3, 0.5, monic=False)
|
|
>>> p
|
|
poly1d([ 2.5, 0. , -1.5, 0. ])
|
|
>>> p(1)
|
|
1.0
|
|
|
|
To evaluate ``p`` at various points ``x`` in the interval ``(-3, 3)``,
|
|
simply pass an array ``x`` to ``p`` as follows:
|
|
|
|
>>> x = np.linspace(-3, 3, 400)
|
|
>>> y = p(x)
|
|
|
|
We can then visualize ``x, y`` using `matplotlib.pyplot`.
|
|
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.plot(x, y)
|
|
>>> ax.set_title("Gegenbauer (ultraspherical) polynomial of degree 3")
|
|
>>> ax.set_xlabel("x")
|
|
>>> ax.set_ylabel("G_3(x)")
|
|
>>> plt.show()
|
|
|
|
"""
|
|
base = jacobi(n, alpha - 0.5, alpha - 0.5, monic=monic)
|
|
if monic:
|
|
return base
|
|
# Abrahmowitz and Stegan 22.5.20
|
|
factor = (_gam(2*alpha + n) * _gam(alpha + 0.5) /
|
|
_gam(2*alpha) / _gam(alpha + 0.5 + n))
|
|
base._scale(factor)
|
|
base.__dict__['_eval_func'] = lambda x: _ufuncs.eval_gegenbauer(float(n),
|
|
alpha, x)
|
|
return base
|
|
|
|
# Chebyshev of the first kind: T_n(x) =
|
|
# n! sqrt(pi) / _gam(n+1./2)* P^(-1/2,-1/2)_n(x)
|
|
# Computed anew.
|
|
|
|
|
|
def roots_chebyt(n, mu=False):
|
|
r"""Gauss-Chebyshev (first kind) quadrature.
|
|
|
|
Computes the sample points and weights for Gauss-Chebyshev
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Chebyshev polynomial of the first kind, :math:`T_n(x)`. These
|
|
sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[-1, 1]`
|
|
with weight function :math:`w(x) = 1/\sqrt{1 - x^2}`. See 22.2.4
|
|
in [AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
numpy.polynomial.chebyshev.chebgauss
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError('n must be a positive integer.')
|
|
x = _ufuncs._sinpi(np.arange(-m + 1, m, 2) / (2*m))
|
|
w = np.full_like(x, pi/m)
|
|
if mu:
|
|
return x, w, pi
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def chebyt(n, monic=False):
|
|
r"""Chebyshev polynomial of the first kind.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
(1 - x^2)\frac{d^2}{dx^2}T_n - x\frac{d}{dx}T_n + n^2T_n = 0;
|
|
|
|
:math:`T_n` is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
T : orthopoly1d
|
|
Chebyshev polynomial of the first kind.
|
|
|
|
See Also
|
|
--------
|
|
chebyu : Chebyshev polynomial of the second kind.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`T_n` are orthogonal over :math:`[-1, 1]`
|
|
with weight function :math:`(1 - x^2)^{-1/2}`.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
Chebyshev polynomials of the first kind of order :math:`n` can
|
|
be obtained as the determinant of specific :math:`n \times n`
|
|
matrices. As an example we can check how the points obtained from
|
|
the determinant of the following :math:`3 \times 3` matrix
|
|
lay exactly on :math:`T_3`:
|
|
|
|
>>> import numpy as np
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from scipy.linalg import det
|
|
>>> from scipy.special import chebyt
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-2.0, 2.0)
|
|
>>> ax.set_title(r'Chebyshev polynomial $T_3$')
|
|
>>> ax.plot(x, chebyt(3)(x), label=rf'$T_3$')
|
|
>>> for p in np.arange(-1.0, 1.0, 0.1):
|
|
... ax.plot(p,
|
|
... det(np.array([[p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
|
|
... 'rx')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
They are also related to the Jacobi Polynomials
|
|
:math:`P_n^{(-0.5, -0.5)}` through the relation:
|
|
|
|
.. math::
|
|
P_n^{(-0.5, -0.5)}(x) = \frac{1}{4^n} \binom{2n}{n} T_n(x)
|
|
|
|
Let's verify it for :math:`n = 3`:
|
|
|
|
>>> from scipy.special import binom
|
|
>>> from scipy.special import jacobi
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> np.allclose(jacobi(3, -0.5, -0.5)(x),
|
|
... 1/64 * binom(6, 3) * chebyt(3)(x))
|
|
True
|
|
|
|
We can plot the Chebyshev polynomials :math:`T_n` for some values
|
|
of :math:`n`:
|
|
|
|
>>> x = np.arange(-1.5, 1.5, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-4.0, 4.0)
|
|
>>> ax.set_title(r'Chebyshev polynomials $T_n$')
|
|
>>> for n in np.arange(2,5):
|
|
... ax.plot(x, chebyt(n)(x), label=rf'$T_n={n}$')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
def wfunc(x):
|
|
return 1.0 / sqrt(1 - x * x)
|
|
if n == 0:
|
|
return orthopoly1d([], [], pi, 1.0, wfunc, (-1, 1), monic,
|
|
lambda x: _ufuncs.eval_chebyt(n, x))
|
|
n1 = n
|
|
x, w, mu = roots_chebyt(n1, mu=True)
|
|
hn = pi / 2
|
|
kn = 2**(n - 1)
|
|
p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
|
|
lambda x: _ufuncs.eval_chebyt(n, x))
|
|
return p
|
|
|
|
# Chebyshev of the second kind
|
|
# U_n(x) = (n+1)! sqrt(pi) / (2*_gam(n+3./2)) * P^(1/2,1/2)_n(x)
|
|
|
|
|
|
def roots_chebyu(n, mu=False):
|
|
r"""Gauss-Chebyshev (second kind) quadrature.
|
|
|
|
Computes the sample points and weights for Gauss-Chebyshev
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Chebyshev polynomial of the second kind, :math:`U_n(x)`. These
|
|
sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[-1, 1]`
|
|
with weight function :math:`w(x) = \sqrt{1 - x^2}`. See 22.2.5 in
|
|
[AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError('n must be a positive integer.')
|
|
t = np.arange(m, 0, -1) * pi / (m + 1)
|
|
x = np.cos(t)
|
|
w = pi * np.sin(t)**2 / (m + 1)
|
|
if mu:
|
|
return x, w, pi / 2
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def chebyu(n, monic=False):
|
|
r"""Chebyshev polynomial of the second kind.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
(1 - x^2)\frac{d^2}{dx^2}U_n - 3x\frac{d}{dx}U_n
|
|
+ n(n + 2)U_n = 0;
|
|
|
|
:math:`U_n` is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
U : orthopoly1d
|
|
Chebyshev polynomial of the second kind.
|
|
|
|
See Also
|
|
--------
|
|
chebyt : Chebyshev polynomial of the first kind.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`U_n` are orthogonal over :math:`[-1, 1]`
|
|
with weight function :math:`(1 - x^2)^{1/2}`.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
Chebyshev polynomials of the second kind of order :math:`n` can
|
|
be obtained as the determinant of specific :math:`n \times n`
|
|
matrices. As an example we can check how the points obtained from
|
|
the determinant of the following :math:`3 \times 3` matrix
|
|
lay exactly on :math:`U_3`:
|
|
|
|
>>> import numpy as np
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from scipy.linalg import det
|
|
>>> from scipy.special import chebyu
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-2.0, 2.0)
|
|
>>> ax.set_title(r'Chebyshev polynomial $U_3$')
|
|
>>> ax.plot(x, chebyu(3)(x), label=rf'$U_3$')
|
|
>>> for p in np.arange(-1.0, 1.0, 0.1):
|
|
... ax.plot(p,
|
|
... det(np.array([[2*p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
|
|
... 'rx')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
They satisfy the recurrence relation:
|
|
|
|
.. math::
|
|
U_{2n-1}(x) = 2 T_n(x)U_{n-1}(x)
|
|
|
|
where the :math:`T_n` are the Chebyshev polynomial of the first kind.
|
|
Let's verify it for :math:`n = 2`:
|
|
|
|
>>> from scipy.special import chebyt
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> np.allclose(chebyu(3)(x), 2 * chebyt(2)(x) * chebyu(1)(x))
|
|
True
|
|
|
|
We can plot the Chebyshev polynomials :math:`U_n` for some values
|
|
of :math:`n`:
|
|
|
|
>>> x = np.arange(-1.0, 1.0, 0.01)
|
|
>>> fig, ax = plt.subplots()
|
|
>>> ax.set_ylim(-1.5, 1.5)
|
|
>>> ax.set_title(r'Chebyshev polynomials $U_n$')
|
|
>>> for n in np.arange(1,5):
|
|
... ax.plot(x, chebyu(n)(x), label=rf'$U_n={n}$')
|
|
>>> plt.legend(loc='best')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
base = jacobi(n, 0.5, 0.5, monic=monic)
|
|
if monic:
|
|
return base
|
|
factor = sqrt(pi) / 2.0 * _gam(n + 2) / _gam(n + 1.5)
|
|
base._scale(factor)
|
|
return base
|
|
|
|
# Chebyshev of the first kind C_n(x)
|
|
|
|
|
|
def roots_chebyc(n, mu=False):
|
|
r"""Gauss-Chebyshev (first kind) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Chebyshev
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Chebyshev polynomial of the first kind, :math:`C_n(x)`. These
|
|
sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[-2, 2]`
|
|
with weight function :math:`w(x) = 1 / \sqrt{1 - (x/2)^2}`. See
|
|
22.2.6 in [AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
x, w, m = roots_chebyt(n, True)
|
|
x *= 2
|
|
w *= 2
|
|
m *= 2
|
|
if mu:
|
|
return x, w, m
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def chebyc(n, monic=False):
|
|
r"""Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
|
|
|
Defined as :math:`C_n(x) = 2T_n(x/2)`, where :math:`T_n` is the
|
|
nth Chebychev polynomial of the first kind.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
C : orthopoly1d
|
|
Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
|
|
|
See Also
|
|
--------
|
|
chebyt : Chebyshev polynomial of the first kind.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`C_n(x)` are orthogonal over :math:`[-2, 2]`
|
|
with weight function :math:`1/\sqrt{1 - (x/2)^2}`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Abramowitz and Stegun, "Handbook of Mathematical Functions"
|
|
Section 22. National Bureau of Standards, 1972.
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_chebyc(n1)
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = 4 * pi * ((n == 0) + 1)
|
|
kn = 1.0
|
|
p = orthopoly1d(x, w, hn, kn,
|
|
wfunc=lambda x: 1.0 / sqrt(1 - x * x / 4.0),
|
|
limits=(-2, 2), monic=monic)
|
|
if not monic:
|
|
p._scale(2.0 / p(2))
|
|
p.__dict__['_eval_func'] = lambda x: _ufuncs.eval_chebyc(n, x)
|
|
return p
|
|
|
|
# Chebyshev of the second kind S_n(x)
|
|
|
|
|
|
def roots_chebys(n, mu=False):
|
|
r"""Gauss-Chebyshev (second kind) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Chebyshev
|
|
quadrature. The sample points are the roots of the nth degree
|
|
Chebyshev polynomial of the second kind, :math:`S_n(x)`. These
|
|
sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[-2, 2]`
|
|
with weight function :math:`w(x) = \sqrt{1 - (x/2)^2}`. See 22.2.7
|
|
in [AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
x, w, m = roots_chebyu(n, True)
|
|
x *= 2
|
|
w *= 2
|
|
m *= 2
|
|
if mu:
|
|
return x, w, m
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def chebys(n, monic=False):
|
|
r"""Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
|
|
|
Defined as :math:`S_n(x) = U_n(x/2)` where :math:`U_n` is the
|
|
nth Chebychev polynomial of the second kind.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
S : orthopoly1d
|
|
Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
|
|
|
See Also
|
|
--------
|
|
chebyu : Chebyshev polynomial of the second kind
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`S_n(x)` are orthogonal over :math:`[-2, 2]`
|
|
with weight function :math:`\sqrt{1 - (x/2)}^2`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Abramowitz and Stegun, "Handbook of Mathematical Functions"
|
|
Section 22. National Bureau of Standards, 1972.
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_chebys(n1)
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = pi
|
|
kn = 1.0
|
|
p = orthopoly1d(x, w, hn, kn,
|
|
wfunc=lambda x: sqrt(1 - x * x / 4.0),
|
|
limits=(-2, 2), monic=monic)
|
|
if not monic:
|
|
factor = (n + 1.0) / p(2)
|
|
p._scale(factor)
|
|
p.__dict__['_eval_func'] = lambda x: _ufuncs.eval_chebys(n, x)
|
|
return p
|
|
|
|
# Shifted Chebyshev of the first kind T^*_n(x)
|
|
|
|
|
|
def roots_sh_chebyt(n, mu=False):
|
|
r"""Gauss-Chebyshev (first kind, shifted) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Chebyshev
|
|
quadrature. The sample points are the roots of the nth degree
|
|
shifted Chebyshev polynomial of the first kind, :math:`T_n(x)`.
|
|
These sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[0, 1]`
|
|
with weight function :math:`w(x) = 1/\sqrt{x - x^2}`. See 22.2.8
|
|
in [AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
xw = roots_chebyt(n, mu)
|
|
return ((xw[0] + 1) / 2,) + xw[1:]
|
|
|
|
|
|
def sh_chebyt(n, monic=False):
|
|
r"""Shifted Chebyshev polynomial of the first kind.
|
|
|
|
Defined as :math:`T^*_n(x) = T_n(2x - 1)` for :math:`T_n` the nth
|
|
Chebyshev polynomial of the first kind.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
T : orthopoly1d
|
|
Shifted Chebyshev polynomial of the first kind.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`T^*_n` are orthogonal over :math:`[0, 1]`
|
|
with weight function :math:`(x - x^2)^{-1/2}`.
|
|
|
|
"""
|
|
base = sh_jacobi(n, 0.0, 0.5, monic=monic)
|
|
if monic:
|
|
return base
|
|
if n > 0:
|
|
factor = 4**n / 2.0
|
|
else:
|
|
factor = 1.0
|
|
base._scale(factor)
|
|
return base
|
|
|
|
|
|
# Shifted Chebyshev of the second kind U^*_n(x)
|
|
def roots_sh_chebyu(n, mu=False):
|
|
r"""Gauss-Chebyshev (second kind, shifted) quadrature.
|
|
|
|
Computes the sample points and weights for Gauss-Chebyshev
|
|
quadrature. The sample points are the roots of the nth degree
|
|
shifted Chebyshev polynomial of the second kind, :math:`U_n(x)`.
|
|
These sample points and weights correctly integrate polynomials of
|
|
degree :math:`2n - 1` or less over the interval :math:`[0, 1]`
|
|
with weight function :math:`w(x) = \sqrt{x - x^2}`. See 22.2.9 in
|
|
[AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
x, w, m = roots_chebyu(n, True)
|
|
x = (x + 1) / 2
|
|
m_us = _ufuncs.beta(1.5, 1.5)
|
|
w *= m_us / m
|
|
if mu:
|
|
return x, w, m_us
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def sh_chebyu(n, monic=False):
|
|
r"""Shifted Chebyshev polynomial of the second kind.
|
|
|
|
Defined as :math:`U^*_n(x) = U_n(2x - 1)` for :math:`U_n` the nth
|
|
Chebyshev polynomial of the second kind.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
U : orthopoly1d
|
|
Shifted Chebyshev polynomial of the second kind.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`U^*_n` are orthogonal over :math:`[0, 1]`
|
|
with weight function :math:`(x - x^2)^{1/2}`.
|
|
|
|
"""
|
|
base = sh_jacobi(n, 2.0, 1.5, monic=monic)
|
|
if monic:
|
|
return base
|
|
factor = 4**n
|
|
base._scale(factor)
|
|
return base
|
|
|
|
# Legendre
|
|
|
|
|
|
def roots_legendre(n, mu=False):
|
|
r"""Gauss-Legendre quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Legendre
|
|
quadrature [GL]_. The sample points are the roots of the nth degree
|
|
Legendre polynomial :math:`P_n(x)`. These sample points and
|
|
weights correctly integrate polynomials of degree :math:`2n - 1`
|
|
or less over the interval :math:`[-1, 1]` with weight function
|
|
:math:`w(x) = 1`. See 2.2.10 in [AS]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
numpy.polynomial.legendre.leggauss
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
.. [GL] Gauss-Legendre quadrature, Wikipedia,
|
|
https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.special import roots_legendre, eval_legendre
|
|
>>> roots, weights = roots_legendre(9)
|
|
|
|
``roots`` holds the roots, and ``weights`` holds the weights for
|
|
Gauss-Legendre quadrature.
|
|
|
|
>>> roots
|
|
array([-0.96816024, -0.83603111, -0.61337143, -0.32425342, 0. ,
|
|
0.32425342, 0.61337143, 0.83603111, 0.96816024])
|
|
>>> weights
|
|
array([0.08127439, 0.18064816, 0.2606107 , 0.31234708, 0.33023936,
|
|
0.31234708, 0.2606107 , 0.18064816, 0.08127439])
|
|
|
|
Verify that we have the roots by evaluating the degree 9 Legendre
|
|
polynomial at ``roots``. All the values are approximately zero:
|
|
|
|
>>> eval_legendre(9, roots)
|
|
array([-8.88178420e-16, -2.22044605e-16, 1.11022302e-16, 1.11022302e-16,
|
|
0.00000000e+00, -5.55111512e-17, -1.94289029e-16, 1.38777878e-16,
|
|
-8.32667268e-17])
|
|
|
|
Here we'll show how the above values can be used to estimate the
|
|
integral from 1 to 2 of f(t) = t + 1/t with Gauss-Legendre
|
|
quadrature [GL]_. First define the function and the integration
|
|
limits.
|
|
|
|
>>> def f(t):
|
|
... return t + 1/t
|
|
...
|
|
>>> a = 1
|
|
>>> b = 2
|
|
|
|
We'll use ``integral(f(t), t=a, t=b)`` to denote the definite integral
|
|
of f from t=a to t=b. The sample points in ``roots`` are from the
|
|
interval [-1, 1], so we'll rewrite the integral with the simple change
|
|
of variable::
|
|
|
|
x = 2/(b - a) * t - (a + b)/(b - a)
|
|
|
|
with inverse::
|
|
|
|
t = (b - a)/2 * x + (a + 2)/2
|
|
|
|
Then::
|
|
|
|
integral(f(t), a, b) =
|
|
(b - a)/2 * integral(f((b-a)/2*x + (a+b)/2), x=-1, x=1)
|
|
|
|
We can approximate the latter integral with the values returned
|
|
by `roots_legendre`.
|
|
|
|
Map the roots computed above from [-1, 1] to [a, b].
|
|
|
|
>>> t = (b - a)/2 * roots + (a + b)/2
|
|
|
|
Approximate the integral as the weighted sum of the function values.
|
|
|
|
>>> (b - a)/2 * f(t).dot(weights)
|
|
2.1931471805599276
|
|
|
|
Compare that to the exact result, which is 3/2 + log(2):
|
|
|
|
>>> 1.5 + np.log(2)
|
|
2.1931471805599454
|
|
|
|
"""
|
|
m = int(n)
|
|
if n < 1 or n != m:
|
|
raise ValueError("n must be a positive integer.")
|
|
|
|
mu0 = 2.0
|
|
def an_func(k):
|
|
return 0.0 * k
|
|
def bn_func(k):
|
|
return k * np.sqrt(1.0 / (4 * k * k - 1))
|
|
f = _ufuncs.eval_legendre
|
|
def df(n, x):
|
|
return (-n * x * _ufuncs.eval_legendre(n, x)
|
|
+ n * _ufuncs.eval_legendre(n - 1, x)) / (1 - x ** 2)
|
|
return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
|
|
|
|
|
|
def legendre(n, monic=False):
|
|
r"""Legendre polynomial.
|
|
|
|
Defined to be the solution of
|
|
|
|
.. math::
|
|
\frac{d}{dx}\left[(1 - x^2)\frac{d}{dx}P_n(x)\right]
|
|
+ n(n + 1)P_n(x) = 0;
|
|
|
|
:math:`P_n(x)` is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
P : orthopoly1d
|
|
Legendre polynomial.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`P_n` are orthogonal over :math:`[-1, 1]`
|
|
with weight function 1.
|
|
|
|
Examples
|
|
--------
|
|
Generate the 3rd-order Legendre polynomial 1/2*(5x^3 + 0x^2 - 3x + 0):
|
|
|
|
>>> from scipy.special import legendre
|
|
>>> legendre(3)
|
|
poly1d([ 2.5, 0. , -1.5, 0. ])
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
if n == 0:
|
|
n1 = n + 1
|
|
else:
|
|
n1 = n
|
|
x, w = roots_legendre(n1)
|
|
if n == 0:
|
|
x, w = [], []
|
|
hn = 2.0 / (2 * n + 1)
|
|
kn = _gam(2 * n + 1) / _gam(n + 1)**2 / 2.0**n
|
|
p = orthopoly1d(x, w, hn, kn, wfunc=lambda x: 1.0, limits=(-1, 1),
|
|
monic=monic,
|
|
eval_func=lambda x: _ufuncs.eval_legendre(n, x))
|
|
return p
|
|
|
|
# Shifted Legendre P^*_n(x)
|
|
|
|
|
|
def roots_sh_legendre(n, mu=False):
|
|
r"""Gauss-Legendre (shifted) quadrature.
|
|
|
|
Compute the sample points and weights for Gauss-Legendre
|
|
quadrature. The sample points are the roots of the nth degree
|
|
shifted Legendre polynomial :math:`P^*_n(x)`. These sample points
|
|
and weights correctly integrate polynomials of degree :math:`2n -
|
|
1` or less over the interval :math:`[0, 1]` with weight function
|
|
:math:`w(x) = 1.0`. See 2.2.11 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
quadrature order
|
|
mu : bool, optional
|
|
If True, return the sum of the weights, optional.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Sample points
|
|
w : ndarray
|
|
Weights
|
|
mu : float
|
|
Sum of the weights
|
|
|
|
See Also
|
|
--------
|
|
scipy.integrate.quadrature
|
|
scipy.integrate.fixed_quad
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
"""
|
|
x, w = roots_legendre(n)
|
|
x = (x + 1) / 2
|
|
w /= 2
|
|
if mu:
|
|
return x, w, 1.0
|
|
else:
|
|
return x, w
|
|
|
|
|
|
def sh_legendre(n, monic=False):
|
|
r"""Shifted Legendre polynomial.
|
|
|
|
Defined as :math:`P^*_n(x) = P_n(2x - 1)` for :math:`P_n` the nth
|
|
Legendre polynomial.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial.
|
|
monic : bool, optional
|
|
If `True`, scale the leading coefficient to be 1. Default is
|
|
`False`.
|
|
|
|
Returns
|
|
-------
|
|
P : orthopoly1d
|
|
Shifted Legendre polynomial.
|
|
|
|
Notes
|
|
-----
|
|
The polynomials :math:`P^*_n` are orthogonal over :math:`[0, 1]`
|
|
with weight function 1.
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError("n must be nonnegative.")
|
|
|
|
def wfunc(x):
|
|
return 0.0 * x + 1.0
|
|
if n == 0:
|
|
return orthopoly1d([], [], 1.0, 1.0, wfunc, (0, 1), monic,
|
|
lambda x: _ufuncs.eval_sh_legendre(n, x))
|
|
x, w = roots_sh_legendre(n)
|
|
hn = 1.0 / (2 * n + 1.0)
|
|
kn = _gam(2 * n + 1) / _gam(n + 1)**2
|
|
p = orthopoly1d(x, w, hn, kn, wfunc, limits=(0, 1), monic=monic,
|
|
eval_func=lambda x: _ufuncs.eval_sh_legendre(n, x))
|
|
return p
|
|
|
|
|
|
# Make the old root function names an alias for the new ones
|
|
_modattrs = globals()
|
|
for newfun, oldfun in _rootfuns_map.items():
|
|
_modattrs[oldfun] = _modattrs[newfun]
|
|
__all__.append(oldfun)
|