Traktor/myenv/Lib/site-packages/sklearn/decomposition/_base.py
2024-05-23 01:57:24 +02:00

204 lines
7.1 KiB
Python

"""Principal Component Analysis Base Classes"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
# Kyle Kastner <kastnerkyle@gmail.com>
#
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy import linalg
from ..base import BaseEstimator, ClassNamePrefixFeaturesOutMixin, TransformerMixin
from ..utils._array_api import _add_to_diagonal, device, get_namespace
from ..utils.validation import check_is_fitted
class _BasePCA(
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
):
"""Base class for PCA methods.
Warning: This class should not be used directly.
Use derived classes instead.
"""
def get_covariance(self):
"""Compute data covariance with the generative model.
``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
where S**2 contains the explained variances, and sigma2 contains the
noise variances.
Returns
-------
cov : array of shape=(n_features, n_features)
Estimated covariance of data.
"""
xp, _ = get_namespace(self.components_)
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * xp.sqrt(exp_var[:, np.newaxis])
exp_var_diff = exp_var - self.noise_variance_
exp_var_diff = xp.where(
exp_var > self.noise_variance_,
exp_var_diff,
xp.asarray(0.0, device=device(exp_var)),
)
cov = (components_.T * exp_var_diff) @ components_
_add_to_diagonal(cov, self.noise_variance_, xp)
return cov
def get_precision(self):
"""Compute data precision matrix with the generative model.
Equals the inverse of the covariance but computed with
the matrix inversion lemma for efficiency.
Returns
-------
precision : array, shape=(n_features, n_features)
Estimated precision of data.
"""
xp, is_array_api_compliant = get_namespace(self.components_)
n_features = self.components_.shape[1]
# handle corner cases first
if self.n_components_ == 0:
return xp.eye(n_features) / self.noise_variance_
if is_array_api_compliant:
linalg_inv = xp.linalg.inv
else:
linalg_inv = linalg.inv
if self.noise_variance_ == 0.0:
return linalg_inv(self.get_covariance())
# Get precision using matrix inversion lemma
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * xp.sqrt(exp_var[:, np.newaxis])
exp_var_diff = exp_var - self.noise_variance_
exp_var_diff = xp.where(
exp_var > self.noise_variance_,
exp_var_diff,
xp.asarray(0.0, device=device(exp_var)),
)
precision = components_ @ components_.T / self.noise_variance_
_add_to_diagonal(precision, 1.0 / exp_var_diff, xp)
precision = components_.T @ linalg_inv(precision) @ components_
precision /= -(self.noise_variance_**2)
_add_to_diagonal(precision, 1.0 / self.noise_variance_, xp)
return precision
@abstractmethod
def fit(self, X, y=None):
"""Placeholder for fit. Subclasses should implement this method!
Fit the model with X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
def transform(self, X):
"""Apply dimensionality reduction to X.
X is projected on the first principal components previously extracted
from a training set.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : array-like of shape (n_samples, n_components)
Projection of X in the first principal components, where `n_samples`
is the number of samples and `n_components` is the number of the components.
"""
xp, _ = get_namespace(X, self.components_, self.explained_variance_)
check_is_fitted(self)
X = self._validate_data(
X, dtype=[xp.float64, xp.float32], accept_sparse=("csr", "csc"), reset=False
)
return self._transform(X, xp=xp, x_is_centered=False)
def _transform(self, X, xp, x_is_centered=False):
X_transformed = X @ self.components_.T
if not x_is_centered:
# Apply the centering after the projection.
# For dense X this avoids copying or mutating the data passed by
# the caller.
# For sparse X it keeps sparsity and avoids having to wrap X into
# a linear operator.
X_transformed -= xp.reshape(self.mean_, (1, -1)) @ self.components_.T
if self.whiten:
# For some solvers (such as "arpack" and "covariance_eigh"), on
# rank deficient data, some components can have a variance
# arbitrarily close to zero, leading to non-finite results when
# whitening. To avoid this problem we clip the variance below.
scale = xp.sqrt(self.explained_variance_)
min_scale = xp.finfo(scale.dtype).eps
scale[scale < min_scale] = min_scale
X_transformed /= scale
return X_transformed
def inverse_transform(self, X):
"""Transform data back to its original space.
In other words, return an input `X_original` whose transform would be X.
Parameters
----------
X : array-like of shape (n_samples, n_components)
New data, where `n_samples` is the number of samples
and `n_components` is the number of components.
Returns
-------
X_original array-like of shape (n_samples, n_features)
Original data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Notes
-----
If whitening is enabled, inverse_transform will compute the
exact inverse operation, which includes reversing whitening.
"""
xp, _ = get_namespace(X)
if self.whiten:
scaled_components = (
xp.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_
)
return X @ scaled_components + self.mean_
else:
return X @ self.components_ + self.mean_
@property
def _n_features_out(self):
"""Number of transformed output features."""
return self.components_.shape[0]