108 lines
3.3 KiB
Python
108 lines
3.3 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from sklearn.impute._base import _BaseImputer
|
|
from sklearn.impute._iterative import _assign_where
|
|
from sklearn.utils._mask import _get_mask
|
|
from sklearn.utils._testing import _convert_container, assert_allclose
|
|
|
|
|
|
@pytest.fixture
|
|
def data():
|
|
X = np.random.randn(10, 2)
|
|
X[::2] = np.nan
|
|
return X
|
|
|
|
|
|
class NoFitIndicatorImputer(_BaseImputer):
|
|
def fit(self, X, y=None):
|
|
return self
|
|
|
|
def transform(self, X, y=None):
|
|
return self._concatenate_indicator(X, self._transform_indicator(X))
|
|
|
|
|
|
class NoTransformIndicatorImputer(_BaseImputer):
|
|
def fit(self, X, y=None):
|
|
mask = _get_mask(X, value_to_mask=np.nan)
|
|
super()._fit_indicator(mask)
|
|
return self
|
|
|
|
def transform(self, X, y=None):
|
|
return self._concatenate_indicator(X, None)
|
|
|
|
|
|
class NoPrecomputedMaskFit(_BaseImputer):
|
|
def fit(self, X, y=None):
|
|
self._fit_indicator(X)
|
|
return self
|
|
|
|
def transform(self, X):
|
|
return self._concatenate_indicator(X, self._transform_indicator(X))
|
|
|
|
|
|
class NoPrecomputedMaskTransform(_BaseImputer):
|
|
def fit(self, X, y=None):
|
|
mask = _get_mask(X, value_to_mask=np.nan)
|
|
self._fit_indicator(mask)
|
|
return self
|
|
|
|
def transform(self, X):
|
|
return self._concatenate_indicator(X, self._transform_indicator(X))
|
|
|
|
|
|
def test_base_imputer_not_fit(data):
|
|
imputer = NoFitIndicatorImputer(add_indicator=True)
|
|
err_msg = "Make sure to call _fit_indicator before _transform_indicator"
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit(data).transform(data)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit_transform(data)
|
|
|
|
|
|
def test_base_imputer_not_transform(data):
|
|
imputer = NoTransformIndicatorImputer(add_indicator=True)
|
|
err_msg = (
|
|
"Call _fit_indicator and _transform_indicator in the imputer implementation"
|
|
)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit(data).transform(data)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit_transform(data)
|
|
|
|
|
|
def test_base_no_precomputed_mask_fit(data):
|
|
imputer = NoPrecomputedMaskFit(add_indicator=True)
|
|
err_msg = "precomputed is True but the input data is not a mask"
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit(data)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit_transform(data)
|
|
|
|
|
|
def test_base_no_precomputed_mask_transform(data):
|
|
imputer = NoPrecomputedMaskTransform(add_indicator=True)
|
|
err_msg = "precomputed is True but the input data is not a mask"
|
|
imputer.fit(data)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.transform(data)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
imputer.fit_transform(data)
|
|
|
|
|
|
@pytest.mark.parametrize("X1_type", ["array", "dataframe"])
|
|
def test_assign_where(X1_type):
|
|
"""Check the behaviour of the private helpers `_assign_where`."""
|
|
rng = np.random.RandomState(0)
|
|
|
|
n_samples, n_features = 10, 5
|
|
X1 = _convert_container(rng.randn(n_samples, n_features), constructor_name=X1_type)
|
|
X2 = rng.randn(n_samples, n_features)
|
|
mask = rng.randint(0, 2, size=(n_samples, n_features)).astype(bool)
|
|
|
|
_assign_where(X1, X2, mask)
|
|
|
|
if X1_type == "dataframe":
|
|
X1 = X1.to_numpy()
|
|
assert_allclose(X1[mask], X2[mask])
|