494 lines
15 KiB
Python
494 lines
15 KiB
Python
import numpy as np
|
|
import pytest
|
|
from scipy import sparse
|
|
|
|
from sklearn import base, datasets, linear_model, svm
|
|
from sklearn.datasets import load_digits, make_blobs, make_classification
|
|
from sklearn.exceptions import ConvergenceWarning
|
|
from sklearn.svm.tests import test_svm
|
|
from sklearn.utils._testing import (
|
|
assert_allclose,
|
|
assert_array_almost_equal,
|
|
assert_array_equal,
|
|
ignore_warnings,
|
|
skip_if_32bit,
|
|
)
|
|
from sklearn.utils.extmath import safe_sparse_dot
|
|
from sklearn.utils.fixes import (
|
|
CSR_CONTAINERS,
|
|
DOK_CONTAINERS,
|
|
LIL_CONTAINERS,
|
|
)
|
|
|
|
# test sample 1
|
|
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
|
|
Y = [1, 1, 1, 2, 2, 2]
|
|
T = np.array([[-1, -1], [2, 2], [3, 2]])
|
|
true_result = [1, 2, 2]
|
|
|
|
# test sample 2
|
|
X2 = np.array(
|
|
[
|
|
[0, 0, 0],
|
|
[1, 1, 1],
|
|
[2, 0, 0],
|
|
[0, 0, 2],
|
|
[3, 3, 3],
|
|
]
|
|
)
|
|
Y2 = [1, 2, 2, 2, 3]
|
|
T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]])
|
|
true_result2 = [1, 2, 3]
|
|
|
|
iris = datasets.load_iris()
|
|
rng = np.random.RandomState(0)
|
|
perm = rng.permutation(iris.target.size)
|
|
iris.data = iris.data[perm]
|
|
iris.target = iris.target[perm]
|
|
|
|
X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0)
|
|
|
|
|
|
def check_svm_model_equal(dense_svm, X_train, y_train, X_test):
|
|
# Use the original svm model for dense fit and clone an exactly same
|
|
# svm model for sparse fit
|
|
sparse_svm = base.clone(dense_svm)
|
|
|
|
dense_svm.fit(X_train.toarray(), y_train)
|
|
if sparse.issparse(X_test):
|
|
X_test_dense = X_test.toarray()
|
|
else:
|
|
X_test_dense = X_test
|
|
sparse_svm.fit(X_train, y_train)
|
|
assert sparse.issparse(sparse_svm.support_vectors_)
|
|
assert sparse.issparse(sparse_svm.dual_coef_)
|
|
assert_allclose(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray())
|
|
assert_allclose(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray())
|
|
if dense_svm.kernel == "linear":
|
|
assert sparse.issparse(sparse_svm.coef_)
|
|
assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray())
|
|
assert_allclose(dense_svm.support_, sparse_svm.support_)
|
|
assert_allclose(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test))
|
|
|
|
assert_array_almost_equal(
|
|
dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)
|
|
)
|
|
assert_array_almost_equal(
|
|
dense_svm.decision_function(X_test_dense),
|
|
sparse_svm.decision_function(X_test_dense),
|
|
)
|
|
if isinstance(dense_svm, svm.OneClassSVM):
|
|
msg = "cannot use sparse input in 'OneClassSVM' trained on dense data"
|
|
else:
|
|
assert_array_almost_equal(
|
|
dense_svm.predict_proba(X_test_dense),
|
|
sparse_svm.predict_proba(X_test),
|
|
decimal=4,
|
|
)
|
|
msg = "cannot use sparse input in 'SVC' trained on dense data"
|
|
if sparse.issparse(X_test):
|
|
with pytest.raises(ValueError, match=msg):
|
|
dense_svm.predict(X_test)
|
|
|
|
|
|
@skip_if_32bit
|
|
@pytest.mark.parametrize(
|
|
"X_train, y_train, X_test",
|
|
[
|
|
[X, Y, T],
|
|
[X2, Y2, T2],
|
|
[X_blobs[:80], y_blobs[:80], X_blobs[80:]],
|
|
[iris.data, iris.target, iris.data],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("kernel", ["linear", "poly", "rbf", "sigmoid"])
|
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + LIL_CONTAINERS)
|
|
def test_svc(X_train, y_train, X_test, kernel, sparse_container):
|
|
"""Check that sparse SVC gives the same result as SVC."""
|
|
X_train = sparse_container(X_train)
|
|
|
|
clf = svm.SVC(
|
|
gamma=1,
|
|
kernel=kernel,
|
|
probability=True,
|
|
random_state=0,
|
|
decision_function_shape="ovo",
|
|
)
|
|
check_svm_model_equal(clf, X_train, y_train, X_test)
|
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
|
def test_unsorted_indices(csr_container):
|
|
# test that the result with sorted and unsorted indices in csr is the same
|
|
# we use a subset of digits as iris, blobs or make_classification didn't
|
|
# show the problem
|
|
X, y = load_digits(return_X_y=True)
|
|
X_test = csr_container(X[50:100])
|
|
X, y = X[:50], y[:50]
|
|
|
|
X_sparse = csr_container(X)
|
|
coef_dense = (
|
|
svm.SVC(kernel="linear", probability=True, random_state=0).fit(X, y).coef_
|
|
)
|
|
sparse_svc = svm.SVC(kernel="linear", probability=True, random_state=0).fit(
|
|
X_sparse, y
|
|
)
|
|
coef_sorted = sparse_svc.coef_
|
|
# make sure dense and sparse SVM give the same result
|
|
assert_allclose(coef_dense, coef_sorted.toarray())
|
|
|
|
# reverse each row's indices
|
|
def scramble_indices(X):
|
|
new_data = []
|
|
new_indices = []
|
|
for i in range(1, len(X.indptr)):
|
|
row_slice = slice(*X.indptr[i - 1 : i + 1])
|
|
new_data.extend(X.data[row_slice][::-1])
|
|
new_indices.extend(X.indices[row_slice][::-1])
|
|
return csr_container((new_data, new_indices, X.indptr), shape=X.shape)
|
|
|
|
X_sparse_unsorted = scramble_indices(X_sparse)
|
|
X_test_unsorted = scramble_indices(X_test)
|
|
|
|
assert not X_sparse_unsorted.has_sorted_indices
|
|
assert not X_test_unsorted.has_sorted_indices
|
|
|
|
unsorted_svc = svm.SVC(kernel="linear", probability=True, random_state=0).fit(
|
|
X_sparse_unsorted, y
|
|
)
|
|
coef_unsorted = unsorted_svc.coef_
|
|
# make sure unsorted indices give same result
|
|
assert_allclose(coef_unsorted.toarray(), coef_sorted.toarray())
|
|
assert_allclose(
|
|
sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
|
|
def test_svc_with_custom_kernel(lil_container):
|
|
def kfunc(x, y):
|
|
return safe_sparse_dot(x, y.T)
|
|
|
|
X_sp = lil_container(X)
|
|
clf_lin = svm.SVC(kernel="linear").fit(X_sp, Y)
|
|
clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y)
|
|
assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp))
|
|
|
|
|
|
@skip_if_32bit
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
|
@pytest.mark.parametrize("kernel", ["linear", "poly", "rbf"])
|
|
def test_svc_iris(csr_container, kernel):
|
|
# Test the sparse SVC with the iris dataset
|
|
iris_data_sp = csr_container(iris.data)
|
|
|
|
sp_clf = svm.SVC(kernel=kernel).fit(iris_data_sp, iris.target)
|
|
clf = svm.SVC(kernel=kernel).fit(iris.data, iris.target)
|
|
|
|
assert_allclose(clf.support_vectors_, sp_clf.support_vectors_.toarray())
|
|
assert_allclose(clf.dual_coef_, sp_clf.dual_coef_.toarray())
|
|
assert_allclose(clf.predict(iris.data), sp_clf.predict(iris_data_sp))
|
|
if kernel == "linear":
|
|
assert_allclose(clf.coef_, sp_clf.coef_.toarray())
|
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
|
def test_sparse_decision_function(csr_container):
|
|
# Test decision_function
|
|
|
|
# Sanity check, test that decision_function implemented in python
|
|
# returns the same as the one in libsvm
|
|
|
|
# multi class:
|
|
iris_data_sp = csr_container(iris.data)
|
|
svc = svm.SVC(kernel="linear", C=0.1, decision_function_shape="ovo")
|
|
clf = svc.fit(iris_data_sp, iris.target)
|
|
|
|
dec = safe_sparse_dot(iris_data_sp, clf.coef_.T) + clf.intercept_
|
|
|
|
assert_allclose(dec, clf.decision_function(iris_data_sp))
|
|
|
|
# binary:
|
|
clf.fit(X, Y)
|
|
dec = np.dot(X, clf.coef_.T) + clf.intercept_
|
|
prediction = clf.predict(X)
|
|
assert_allclose(dec.ravel(), clf.decision_function(X))
|
|
assert_allclose(
|
|
prediction, clf.classes_[(clf.decision_function(X) > 0).astype(int).ravel()]
|
|
)
|
|
expected = np.array([-1.0, -0.66, -1.0, 0.66, 1.0, 1.0])
|
|
assert_array_almost_equal(clf.decision_function(X), expected, decimal=2)
|
|
|
|
|
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
|
|
def test_error(lil_container):
|
|
# Test that it gives proper exception on deficient input
|
|
clf = svm.SVC()
|
|
X_sp = lil_container(X)
|
|
|
|
Y2 = Y[:-1] # wrong dimensions for labels
|
|
with pytest.raises(ValueError):
|
|
clf.fit(X_sp, Y2)
|
|
|
|
clf.fit(X_sp, Y)
|
|
assert_array_equal(clf.predict(T), true_result)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"lil_container, dok_container", zip(LIL_CONTAINERS, DOK_CONTAINERS)
|
|
)
|
|
def test_linearsvc(lil_container, dok_container):
|
|
# Similar to test_SVC
|
|
X_sp = lil_container(X)
|
|
X2_sp = dok_container(X2)
|
|
|
|
clf = svm.LinearSVC(random_state=0).fit(X, Y)
|
|
sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y)
|
|
|
|
assert sp_clf.fit_intercept
|
|
|
|
assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4)
|
|
assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4)
|
|
|
|
assert_allclose(clf.predict(X), sp_clf.predict(X_sp))
|
|
|
|
clf.fit(X2, Y2)
|
|
sp_clf.fit(X2_sp, Y2)
|
|
|
|
assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4)
|
|
assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4)
|
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
|
def test_linearsvc_iris(csr_container):
|
|
# Test the sparse LinearSVC with the iris dataset
|
|
iris_data_sp = csr_container(iris.data)
|
|
|
|
sp_clf = svm.LinearSVC(random_state=0).fit(iris_data_sp, iris.target)
|
|
clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target)
|
|
|
|
assert clf.fit_intercept == sp_clf.fit_intercept
|
|
|
|
assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1)
|
|
assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1)
|
|
assert_allclose(clf.predict(iris.data), sp_clf.predict(iris_data_sp))
|
|
|
|
# check decision_function
|
|
pred = np.argmax(sp_clf.decision_function(iris_data_sp), axis=1)
|
|
assert_allclose(pred, clf.predict(iris.data))
|
|
|
|
# sparsify the coefficients on both models and check that they still
|
|
# produce the same results
|
|
clf.sparsify()
|
|
assert_array_equal(pred, clf.predict(iris_data_sp))
|
|
sp_clf.sparsify()
|
|
assert_array_equal(pred, sp_clf.predict(iris_data_sp))
|
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
|
def test_weight(csr_container):
|
|
# Test class weights
|
|
X_, y_ = make_classification(
|
|
n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0
|
|
)
|
|
|
|
X_ = csr_container(X_)
|
|
for clf in (
|
|
linear_model.LogisticRegression(),
|
|
svm.LinearSVC(random_state=0),
|
|
svm.SVC(),
|
|
):
|
|
clf.set_params(class_weight={0: 5})
|
|
clf.fit(X_[:180], y_[:180])
|
|
y_pred = clf.predict(X_[180:])
|
|
assert np.sum(y_pred == y_[180:]) >= 11
|
|
|
|
|
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
|
|
def test_sample_weights(lil_container):
|
|
# Test weights on individual samples
|
|
X_sp = lil_container(X)
|
|
|
|
clf = svm.SVC()
|
|
clf.fit(X_sp, Y)
|
|
assert_array_equal(clf.predict([X[2]]), [1.0])
|
|
|
|
sample_weight = [0.1] * 3 + [10] * 3
|
|
clf.fit(X_sp, Y, sample_weight=sample_weight)
|
|
assert_array_equal(clf.predict([X[2]]), [2.0])
|
|
|
|
|
|
def test_sparse_liblinear_intercept_handling():
|
|
# Test that sparse liblinear honours intercept_scaling param
|
|
test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"X_train, y_train, X_test",
|
|
[
|
|
[X, None, T],
|
|
[X2, None, T2],
|
|
[X_blobs[:80], None, X_blobs[80:]],
|
|
[iris.data, None, iris.data],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("kernel", ["linear", "poly", "rbf", "sigmoid"])
|
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + LIL_CONTAINERS)
|
|
@skip_if_32bit
|
|
def test_sparse_oneclasssvm(X_train, y_train, X_test, kernel, sparse_container):
|
|
# Check that sparse OneClassSVM gives the same result as dense OneClassSVM
|
|
X_train = sparse_container(X_train)
|
|
|
|
clf = svm.OneClassSVM(gamma=1, kernel=kernel)
|
|
check_svm_model_equal(clf, X_train, y_train, X_test)
|
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
|
def test_sparse_realdata(csr_container):
|
|
# Test on a subset from the 20newsgroups dataset.
|
|
# This catches some bugs if input is not correctly converted into
|
|
# sparse format or weights are not correctly initialized.
|
|
data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069])
|
|
|
|
# SVC does not support large sparse, so we specify int32 indices
|
|
# In this case, `csr_matrix` automatically uses int32 regardless of the dtypes of
|
|
# `indices` and `indptr` but `csr_array` may or may not use the same dtype as
|
|
# `indices` and `indptr`, which would be int64 if not specified
|
|
indices = np.array([6, 5, 35, 31], dtype=np.int32)
|
|
indptr = np.array([0] * 8 + [1] * 32 + [2] * 38 + [4] * 3, dtype=np.int32)
|
|
|
|
X = csr_container((data, indices, indptr))
|
|
y = np.array(
|
|
[
|
|
1.0,
|
|
0.0,
|
|
2.0,
|
|
2.0,
|
|
1.0,
|
|
1.0,
|
|
1.0,
|
|
2.0,
|
|
2.0,
|
|
0.0,
|
|
1.0,
|
|
2.0,
|
|
2.0,
|
|
0.0,
|
|
2.0,
|
|
0.0,
|
|
3.0,
|
|
0.0,
|
|
3.0,
|
|
0.0,
|
|
1.0,
|
|
1.0,
|
|
3.0,
|
|
2.0,
|
|
3.0,
|
|
2.0,
|
|
0.0,
|
|
3.0,
|
|
1.0,
|
|
0.0,
|
|
2.0,
|
|
1.0,
|
|
2.0,
|
|
0.0,
|
|
1.0,
|
|
0.0,
|
|
2.0,
|
|
3.0,
|
|
1.0,
|
|
3.0,
|
|
0.0,
|
|
1.0,
|
|
0.0,
|
|
0.0,
|
|
2.0,
|
|
0.0,
|
|
1.0,
|
|
2.0,
|
|
2.0,
|
|
2.0,
|
|
3.0,
|
|
2.0,
|
|
0.0,
|
|
3.0,
|
|
2.0,
|
|
1.0,
|
|
2.0,
|
|
3.0,
|
|
2.0,
|
|
2.0,
|
|
0.0,
|
|
1.0,
|
|
0.0,
|
|
1.0,
|
|
2.0,
|
|
3.0,
|
|
0.0,
|
|
0.0,
|
|
2.0,
|
|
2.0,
|
|
1.0,
|
|
3.0,
|
|
1.0,
|
|
1.0,
|
|
0.0,
|
|
1.0,
|
|
2.0,
|
|
1.0,
|
|
1.0,
|
|
3.0,
|
|
]
|
|
)
|
|
|
|
clf = svm.SVC(kernel="linear").fit(X.toarray(), y)
|
|
sp_clf = svm.SVC(kernel="linear").fit(X.tocoo(), y)
|
|
|
|
assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray())
|
|
assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray())
|
|
|
|
|
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
|
|
def test_sparse_svc_clone_with_callable_kernel(lil_container):
|
|
# Test that the "dense_fit" is called even though we use sparse input
|
|
# meaning that everything works fine.
|
|
a = svm.SVC(C=1, kernel=lambda x, y: x @ y.T, probability=True, random_state=0)
|
|
b = base.clone(a)
|
|
|
|
X_sp = lil_container(X)
|
|
b.fit(X_sp, Y)
|
|
pred = b.predict(X_sp)
|
|
b.predict_proba(X_sp)
|
|
|
|
dense_svm = svm.SVC(
|
|
C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0
|
|
)
|
|
pred_dense = dense_svm.fit(X, Y).predict(X)
|
|
assert_array_equal(pred_dense, pred)
|
|
# b.decision_function(X_sp) # XXX : should be supported
|
|
|
|
|
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
|
|
def test_timeout(lil_container):
|
|
sp = svm.SVC(
|
|
C=1, kernel=lambda x, y: x @ y.T, probability=True, random_state=0, max_iter=1
|
|
)
|
|
warning_msg = (
|
|
r"Solver terminated early \(max_iter=1\). Consider pre-processing "
|
|
r"your data with StandardScaler or MinMaxScaler."
|
|
)
|
|
with pytest.warns(ConvergenceWarning, match=warning_msg):
|
|
sp.fit(lil_container(X), Y)
|
|
|
|
|
|
def test_consistent_proba():
|
|
a = svm.SVC(probability=True, max_iter=1, random_state=0)
|
|
with ignore_warnings(category=ConvergenceWarning):
|
|
proba_1 = a.fit(X, Y).predict_proba(X)
|
|
a = svm.SVC(probability=True, max_iter=1, random_state=0)
|
|
with ignore_warnings(category=ConvergenceWarning):
|
|
proba_2 = a.fit(X, Y).predict_proba(X)
|
|
assert_allclose(proba_1, proba_2)
|