Traktor/myenv/Lib/site-packages/sklearn/tests/test_multiclass.py
2024-05-23 01:57:24 +02:00

949 lines
32 KiB
Python

from re import escape
import numpy as np
import pytest
import scipy.sparse as sp
from numpy.testing import assert_allclose
from sklearn import datasets, svm
from sklearn.datasets import load_breast_cancer
from sklearn.exceptions import NotFittedError
from sklearn.impute import SimpleImputer
from sklearn.linear_model import (
ElasticNet,
Lasso,
LinearRegression,
LogisticRegression,
Perceptron,
Ridge,
SGDClassifier,
)
from sklearn.metrics import precision_score, recall_score
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.multiclass import (
OneVsOneClassifier,
OneVsRestClassifier,
OutputCodeClassifier,
)
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.svm import SVC, LinearSVC
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils import (
check_array,
shuffle,
)
from sklearn.utils._mocking import CheckingClassifier
from sklearn.utils._testing import assert_almost_equal, assert_array_equal
from sklearn.utils.fixes import (
COO_CONTAINERS,
CSC_CONTAINERS,
CSR_CONTAINERS,
DOK_CONTAINERS,
LIL_CONTAINERS,
)
from sklearn.utils.multiclass import check_classification_targets, type_of_target
msg = "The default value for `force_alpha` will change"
pytestmark = pytest.mark.filterwarnings(f"ignore:{msg}:FutureWarning")
iris = datasets.load_iris()
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
n_classes = 3
def test_ovr_exceptions():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
# test predicting without fitting
with pytest.raises(NotFittedError):
ovr.predict([])
# Fail on multioutput data
msg = "Multioutput target data is not supported with label binarization"
with pytest.raises(ValueError, match=msg):
X = np.array([[1, 0], [0, 1]])
y = np.array([[1, 2], [3, 1]])
OneVsRestClassifier(MultinomialNB()).fit(X, y)
with pytest.raises(ValueError, match=msg):
X = np.array([[1, 0], [0, 1]])
y = np.array([[1.5, 2.4], [3.1, 0.8]])
OneVsRestClassifier(MultinomialNB()).fit(X, y)
def test_check_classification_targets():
# Test that check_classification_target return correct type. #5782
y = np.array([0.0, 1.1, 2.0, 3.0])
msg = type_of_target(y)
with pytest.raises(ValueError, match=msg):
check_classification_targets(y)
def test_ovr_fit_predict():
# A classifier which implements decision_function.
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert len(ovr.estimators_) == n_classes
clf = LinearSVC(random_state=0)
pred2 = clf.fit(iris.data, iris.target).predict(iris.data)
assert np.mean(iris.target == pred) == np.mean(iris.target == pred2)
# A classifier which implements predict_proba.
ovr = OneVsRestClassifier(MultinomialNB())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert np.mean(iris.target == pred) > 0.65
def test_ovr_partial_fit():
# Test if partial_fit is working as intended
X, y = shuffle(iris.data, iris.target, random_state=0)
ovr = OneVsRestClassifier(MultinomialNB())
ovr.partial_fit(X[:100], y[:100], np.unique(y))
ovr.partial_fit(X[100:], y[100:])
pred = ovr.predict(X)
ovr2 = OneVsRestClassifier(MultinomialNB())
pred2 = ovr2.fit(X, y).predict(X)
assert_almost_equal(pred, pred2)
assert len(ovr.estimators_) == len(np.unique(y))
assert np.mean(y == pred) > 0.65
# Test when mini batches doesn't have all classes
# with SGDClassifier
X = np.abs(np.random.randn(14, 2))
y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]
ovr = OneVsRestClassifier(
SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0)
)
ovr.partial_fit(X[:7], y[:7], np.unique(y))
ovr.partial_fit(X[7:], y[7:])
pred = ovr.predict(X)
ovr1 = OneVsRestClassifier(
SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0)
)
pred1 = ovr1.fit(X, y).predict(X)
assert np.mean(pred == y) == np.mean(pred1 == y)
# test partial_fit only exists if estimator has it:
ovr = OneVsRestClassifier(SVC())
assert not hasattr(ovr, "partial_fit")
def test_ovr_partial_fit_exceptions():
ovr = OneVsRestClassifier(MultinomialNB())
X = np.abs(np.random.randn(14, 2))
y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]
ovr.partial_fit(X[:7], y[:7], np.unique(y))
# If a new class that was not in the first call of partial fit is seen
# it should raise ValueError
y1 = [5] + y[7:-1]
msg = r"Mini-batch contains \[.+\] while classes must be subset of \[.+\]"
with pytest.raises(ValueError, match=msg):
ovr.partial_fit(X=X[7:], y=y1)
def test_ovr_ovo_regressor():
# test that ovr and ovo work on regressors which don't have a decision_
# function
ovr = OneVsRestClassifier(DecisionTreeRegressor())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert len(ovr.estimators_) == n_classes
assert_array_equal(np.unique(pred), [0, 1, 2])
# we are doing something sensible
assert np.mean(pred == iris.target) > 0.9
ovr = OneVsOneClassifier(DecisionTreeRegressor())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert len(ovr.estimators_) == n_classes * (n_classes - 1) / 2
assert_array_equal(np.unique(pred), [0, 1, 2])
# we are doing something sensible
assert np.mean(pred == iris.target) > 0.9
@pytest.mark.parametrize(
"sparse_container",
CSR_CONTAINERS + CSC_CONTAINERS + COO_CONTAINERS + DOK_CONTAINERS + LIL_CONTAINERS,
)
def test_ovr_fit_predict_sparse(sparse_container):
base_clf = MultinomialNB(alpha=1)
X, Y = datasets.make_multilabel_classification(
n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=True,
random_state=0,
)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse_container(Y_train))
Y_pred_sprs = clf_sprs.predict(X_test)
assert clf.multilabel_
assert sp.issparse(Y_pred_sprs)
assert_array_equal(Y_pred_sprs.toarray(), Y_pred)
# Test predict_proba
Y_proba = clf_sprs.predict_proba(X_test)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = Y_proba > 0.5
assert_array_equal(pred, Y_pred_sprs.toarray())
# Test decision_function
clf = svm.SVC()
clf_sprs = OneVsRestClassifier(clf).fit(X_train, sparse_container(Y_train))
dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int)
assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray())
def test_ovr_always_present():
# Test that ovr works with classes that are always present or absent.
# Note: tests is the case where _ConstantPredictor is utilised
X = np.ones((10, 2))
X[:5, :] = 0
# Build an indicator matrix where two features are always on.
# As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)]
y = np.zeros((10, 3))
y[5:, 0] = 1
y[:, 1] = 1
y[:, 2] = 1
ovr = OneVsRestClassifier(LogisticRegression())
msg = r"Label .+ is present in all training examples"
with pytest.warns(UserWarning, match=msg):
ovr.fit(X, y)
y_pred = ovr.predict(X)
assert_array_equal(np.array(y_pred), np.array(y))
y_pred = ovr.decision_function(X)
assert np.unique(y_pred[:, -2:]) == 1
y_pred = ovr.predict_proba(X)
assert_array_equal(y_pred[:, -1], np.ones(X.shape[0]))
# y has a constantly absent label
y = np.zeros((10, 2))
y[5:, 0] = 1 # variable label
ovr = OneVsRestClassifier(LogisticRegression())
msg = r"Label not 1 is present in all training examples"
with pytest.warns(UserWarning, match=msg):
ovr.fit(X, y)
y_pred = ovr.predict_proba(X)
assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0]))
def test_ovr_multiclass():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
y = ["eggs", "spam", "ham", "eggs", "ham"]
Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]])
classes = set("ham eggs spam".split())
for base_clf in (
MultinomialNB(),
LinearSVC(random_state=0),
LinearRegression(),
Ridge(),
ElasticNet(),
):
clf = OneVsRestClassifier(base_clf).fit(X, y)
assert set(clf.classes_) == classes
y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
assert_array_equal(y_pred, ["eggs"])
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[0, 0, 4]])[0]
assert_array_equal(y_pred, [0, 0, 1])
def test_ovr_binary():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
y = ["eggs", "spam", "spam", "eggs", "spam"]
Y = np.array([[0, 1, 1, 0, 1]]).T
classes = set("eggs spam".split())
def conduct_test(base_clf, test_predict_proba=False):
clf = OneVsRestClassifier(base_clf).fit(X, y)
assert set(clf.classes_) == classes
y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
assert_array_equal(y_pred, ["eggs"])
if hasattr(base_clf, "decision_function"):
dec = clf.decision_function(X)
assert dec.shape == (5,)
if test_predict_proba:
X_test = np.array([[0, 0, 4]])
probabilities = clf.predict_proba(X_test)
assert 2 == len(probabilities[0])
assert clf.classes_[np.argmax(probabilities, axis=1)] == clf.predict(X_test)
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[3, 0, 0]])[0]
assert y_pred == 1
for base_clf in (
LinearSVC(random_state=0),
LinearRegression(),
Ridge(),
ElasticNet(),
):
conduct_test(base_clf)
for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()):
conduct_test(base_clf, test_predict_proba=True)
def test_ovr_multilabel():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]])
for base_clf in (
MultinomialNB(),
LinearSVC(random_state=0),
LinearRegression(),
Ridge(),
ElasticNet(),
Lasso(alpha=0.5),
):
clf = OneVsRestClassifier(base_clf).fit(X, y)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_array_equal(y_pred, [0, 1, 1])
assert clf.multilabel_
def test_ovr_fit_predict_svc():
ovr = OneVsRestClassifier(svm.SVC())
ovr.fit(iris.data, iris.target)
assert len(ovr.estimators_) == 3
assert ovr.score(iris.data, iris.target) > 0.9
def test_ovr_multilabel_dataset():
base_clf = MultinomialNB(alpha=1)
for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)):
X, Y = datasets.make_multilabel_classification(
n_samples=100,
n_features=20,
n_classes=5,
n_labels=2,
length=50,
allow_unlabeled=au,
random_state=0,
)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
assert clf.multilabel_
assert_almost_equal(
precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2
)
assert_almost_equal(
recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2
)
def test_ovr_multilabel_predict_proba():
base_clf = MultinomialNB(alpha=1)
for au in (False, True):
X, Y = datasets.make_multilabel_classification(
n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=au,
random_state=0,
)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# Decision function only estimator.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert not hasattr(decision_only, "predict_proba")
# Estimator with predict_proba disabled, depending on parameters.
decision_only = OneVsRestClassifier(svm.SVC(probability=False))
assert not hasattr(decision_only, "predict_proba")
decision_only.fit(X_train, Y_train)
assert not hasattr(decision_only, "predict_proba")
assert hasattr(decision_only, "decision_function")
# Estimator which can get predict_proba enabled after fitting
gs = GridSearchCV(
svm.SVC(probability=False), param_grid={"probability": [True]}
)
proba_after_fit = OneVsRestClassifier(gs)
assert not hasattr(proba_after_fit, "predict_proba")
proba_after_fit.fit(X_train, Y_train)
assert hasattr(proba_after_fit, "predict_proba")
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = Y_proba > 0.5
assert_array_equal(pred, Y_pred)
def test_ovr_single_label_predict_proba():
base_clf = MultinomialNB(alpha=1)
X, Y = iris.data, iris.target
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# Decision function only estimator.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert not hasattr(decision_only, "predict_proba")
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
assert_almost_equal(Y_proba.sum(axis=1), 1.0)
# predict assigns a label if the probability that the
# sample has the label with the greatest predictive probability.
pred = Y_proba.argmax(axis=1)
assert not (pred - Y_pred).any()
def test_ovr_multilabel_decision_function():
X, Y = datasets.make_multilabel_classification(
n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=True,
random_state=0,
)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
assert_array_equal(
(clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)
)
def test_ovr_single_label_decision_function():
X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test))
def test_ovr_gridsearch():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovr, {"estimator__C": Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert best_C in Cs
def test_ovr_pipeline():
# Test with pipeline of length one
# This test is needed because the multiclass estimators may fail to detect
# the presence of predict_proba or decision_function.
clf = Pipeline([("tree", DecisionTreeClassifier())])
ovr_pipe = OneVsRestClassifier(clf)
ovr_pipe.fit(iris.data, iris.target)
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(iris.data, iris.target)
assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data))
def test_ovo_exceptions():
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
with pytest.raises(NotFittedError):
ovo.predict([])
def test_ovo_fit_on_list():
# Test that OneVsOne fitting works with a list of targets and yields the
# same output as predict from an array
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data)
iris_data_list = [list(a) for a in iris.data]
prediction_from_list = ovo.fit(iris_data_list, list(iris.target)).predict(
iris_data_list
)
assert_array_equal(prediction_from_array, prediction_from_list)
def test_ovo_fit_predict():
# A classifier which implements decision_function.
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
ovo.fit(iris.data, iris.target).predict(iris.data)
assert len(ovo.estimators_) == n_classes * (n_classes - 1) / 2
# A classifier which implements predict_proba.
ovo = OneVsOneClassifier(MultinomialNB())
ovo.fit(iris.data, iris.target).predict(iris.data)
assert len(ovo.estimators_) == n_classes * (n_classes - 1) / 2
def test_ovo_partial_fit_predict():
temp = datasets.load_iris()
X, y = temp.data, temp.target
ovo1 = OneVsOneClassifier(MultinomialNB())
ovo1.partial_fit(X[:100], y[:100], np.unique(y))
ovo1.partial_fit(X[100:], y[100:])
pred1 = ovo1.predict(X)
ovo2 = OneVsOneClassifier(MultinomialNB())
ovo2.fit(X, y)
pred2 = ovo2.predict(X)
assert len(ovo1.estimators_) == n_classes * (n_classes - 1) / 2
assert np.mean(y == pred1) > 0.65
assert_almost_equal(pred1, pred2)
# Test when mini-batches have binary target classes
ovo1 = OneVsOneClassifier(MultinomialNB())
ovo1.partial_fit(X[:60], y[:60], np.unique(y))
ovo1.partial_fit(X[60:], y[60:])
pred1 = ovo1.predict(X)
ovo2 = OneVsOneClassifier(MultinomialNB())
pred2 = ovo2.fit(X, y).predict(X)
assert_almost_equal(pred1, pred2)
assert len(ovo1.estimators_) == len(np.unique(y))
assert np.mean(y == pred1) > 0.65
ovo = OneVsOneClassifier(MultinomialNB())
X = np.random.rand(14, 2)
y = [1, 1, 2, 3, 3, 0, 0, 4, 4, 4, 4, 4, 2, 2]
ovo.partial_fit(X[:7], y[:7], [0, 1, 2, 3, 4])
ovo.partial_fit(X[7:], y[7:])
pred = ovo.predict(X)
ovo2 = OneVsOneClassifier(MultinomialNB())
pred2 = ovo2.fit(X, y).predict(X)
assert_almost_equal(pred, pred2)
# raises error when mini-batch does not have classes from all_classes
ovo = OneVsOneClassifier(MultinomialNB())
error_y = [0, 1, 2, 3, 4, 5, 2]
message_re = escape(
"Mini-batch contains {0} while it must be subset of {1}".format(
np.unique(error_y), np.unique(y)
)
)
with pytest.raises(ValueError, match=message_re):
ovo.partial_fit(X[:7], error_y, np.unique(y))
# test partial_fit only exists if estimator has it:
ovr = OneVsOneClassifier(SVC())
assert not hasattr(ovr, "partial_fit")
def test_ovo_decision_function():
n_samples = iris.data.shape[0]
ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0))
# first binary
ovo_clf.fit(iris.data, iris.target == 0)
decisions = ovo_clf.decision_function(iris.data)
assert decisions.shape == (n_samples,)
# then multi-class
ovo_clf.fit(iris.data, iris.target)
decisions = ovo_clf.decision_function(iris.data)
assert decisions.shape == (n_samples, n_classes)
assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data))
# Compute the votes
votes = np.zeros((n_samples, n_classes))
k = 0
for i in range(n_classes):
for j in range(i + 1, n_classes):
pred = ovo_clf.estimators_[k].predict(iris.data)
votes[pred == 0, i] += 1
votes[pred == 1, j] += 1
k += 1
# Extract votes and verify
assert_array_equal(votes, np.round(decisions))
for class_idx in range(n_classes):
# For each sample and each class, there only 3 possible vote levels
# because they are only 3 distinct class pairs thus 3 distinct
# binary classifiers.
# Therefore, sorting predictions based on votes would yield
# mostly tied predictions:
assert set(votes[:, class_idx]).issubset(set([0.0, 1.0, 2.0]))
# The OVO decision function on the other hand is able to resolve
# most of the ties on this data as it combines both the vote counts
# and the aggregated confidence levels of the binary classifiers
# to compute the aggregate decision function. The iris dataset
# has 150 samples with a couple of duplicates. The OvO decisions
# can resolve most of the ties:
assert len(np.unique(decisions[:, class_idx])) > 146
def test_ovo_gridsearch():
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovo, {"estimator__C": Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert best_C in Cs
def test_ovo_ties():
# Test that ties are broken using the decision function,
# not defaulting to the smallest label
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y = np.array([2, 0, 1, 2])
multi_clf = OneVsOneClassifier(Perceptron(shuffle=False, max_iter=4, tol=None))
ovo_prediction = multi_clf.fit(X, y).predict(X)
ovo_decision = multi_clf.decision_function(X)
# Classifiers are in order 0-1, 0-2, 1-2
# Use decision_function to compute the votes and the normalized
# sum_of_confidences, which is used to disambiguate when there is a tie in
# votes.
votes = np.round(ovo_decision)
normalized_confidences = ovo_decision - votes
# For the first point, there is one vote per class
assert_array_equal(votes[0, :], 1)
# For the rest, there is no tie and the prediction is the argmax
assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:])
# For the tie, the prediction is the class with the highest score
assert ovo_prediction[0] == normalized_confidences[0].argmax()
def test_ovo_ties2():
# test that ties can not only be won by the first two labels
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y_ref = np.array([2, 0, 1, 2])
# cycle through labels so that each label wins once
for i in range(3):
y = (y_ref + i) % 3
multi_clf = OneVsOneClassifier(Perceptron(shuffle=False, max_iter=4, tol=None))
ovo_prediction = multi_clf.fit(X, y).predict(X)
assert ovo_prediction[0] == i % 3
def test_ovo_string_y():
# Test that the OvO doesn't mess up the encoding of string labels
X = np.eye(4)
y = np.array(["a", "b", "c", "d"])
ovo = OneVsOneClassifier(LinearSVC())
ovo.fit(X, y)
assert_array_equal(y, ovo.predict(X))
def test_ovo_one_class():
# Test error for OvO with one class
X = np.eye(4)
y = np.array(["a"] * 4)
ovo = OneVsOneClassifier(LinearSVC())
msg = "when only one class"
with pytest.raises(ValueError, match=msg):
ovo.fit(X, y)
def test_ovo_float_y():
# Test that the OvO errors on float targets
X = iris.data
y = iris.data[:, 0]
ovo = OneVsOneClassifier(LinearSVC())
msg = "Unknown label type"
with pytest.raises(ValueError, match=msg):
ovo.fit(X, y)
def test_ecoc_exceptions():
ecoc = OutputCodeClassifier(LinearSVC(random_state=0))
with pytest.raises(NotFittedError):
ecoc.predict([])
def test_ecoc_fit_predict():
# A classifier which implements decision_function.
ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert len(ecoc.estimators_) == n_classes * 2
# A classifier which implements predict_proba.
ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert len(ecoc.estimators_) == n_classes * 2
def test_ecoc_gridsearch():
ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0)
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ecoc, {"estimator__C": Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert best_C in Cs
def test_ecoc_float_y():
# Test that the OCC errors on float targets
X = iris.data
y = iris.data[:, 0]
ovo = OutputCodeClassifier(LinearSVC())
msg = "Unknown label type"
with pytest.raises(ValueError, match=msg):
ovo.fit(X, y)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_ecoc_delegate_sparse_base_estimator(csc_container):
# Non-regression test for
# https://github.com/scikit-learn/scikit-learn/issues/17218
X, y = iris.data, iris.target
X_sp = csc_container(X)
# create an estimator that does not support sparse input
base_estimator = CheckingClassifier(
check_X=check_array,
check_X_params={"ensure_2d": True, "accept_sparse": False},
)
ecoc = OutputCodeClassifier(base_estimator, random_state=0)
with pytest.raises(TypeError, match="Sparse data was passed"):
ecoc.fit(X_sp, y)
ecoc.fit(X, y)
with pytest.raises(TypeError, match="Sparse data was passed"):
ecoc.predict(X_sp)
# smoke test to check when sparse input should be supported
ecoc = OutputCodeClassifier(LinearSVC(random_state=0))
ecoc.fit(X_sp, y).predict(X_sp)
assert len(ecoc.estimators_) == 4
def test_pairwise_indices():
clf_precomputed = svm.SVC(kernel="precomputed")
X, y = iris.data, iris.target
ovr_false = OneVsOneClassifier(clf_precomputed)
linear_kernel = np.dot(X, X.T)
ovr_false.fit(linear_kernel, y)
n_estimators = len(ovr_false.estimators_)
precomputed_indices = ovr_false.pairwise_indices_
for idx in precomputed_indices:
assert (
idx.shape[0] * n_estimators / (n_estimators - 1) == linear_kernel.shape[0]
)
def test_pairwise_n_features_in():
"""Check the n_features_in_ attributes of the meta and base estimators
When the training data is a regular design matrix, everything is intuitive.
However, when the training data is a precomputed kernel matrix, the
multiclass strategy can resample the kernel matrix of the underlying base
estimator both row-wise and column-wise and this has a non-trivial impact
on the expected value for the n_features_in_ of both the meta and the base
estimators.
"""
X, y = iris.data, iris.target
# Remove the last sample to make the classes not exactly balanced and make
# the test more interesting.
assert y[-1] == 0
X = X[:-1]
y = y[:-1]
# Fitting directly on the design matrix:
assert X.shape == (149, 4)
clf_notprecomputed = svm.SVC(kernel="linear").fit(X, y)
assert clf_notprecomputed.n_features_in_ == 4
ovr_notprecomputed = OneVsRestClassifier(clf_notprecomputed).fit(X, y)
assert ovr_notprecomputed.n_features_in_ == 4
for est in ovr_notprecomputed.estimators_:
assert est.n_features_in_ == 4
ovo_notprecomputed = OneVsOneClassifier(clf_notprecomputed).fit(X, y)
assert ovo_notprecomputed.n_features_in_ == 4
assert ovo_notprecomputed.n_classes_ == 3
assert len(ovo_notprecomputed.estimators_) == 3
for est in ovo_notprecomputed.estimators_:
assert est.n_features_in_ == 4
# When working with precomputed kernels we have one "feature" per training
# sample:
K = X @ X.T
assert K.shape == (149, 149)
clf_precomputed = svm.SVC(kernel="precomputed").fit(K, y)
assert clf_precomputed.n_features_in_ == 149
ovr_precomputed = OneVsRestClassifier(clf_precomputed).fit(K, y)
assert ovr_precomputed.n_features_in_ == 149
assert ovr_precomputed.n_classes_ == 3
assert len(ovr_precomputed.estimators_) == 3
for est in ovr_precomputed.estimators_:
assert est.n_features_in_ == 149
# This becomes really interesting with OvO and precomputed kernel together:
# internally, OvO will drop the samples of the classes not part of the pair
# of classes under consideration for a given binary classifier. Since we
# use a precomputed kernel, it will also drop the matching columns of the
# kernel matrix, and therefore we have fewer "features" as result.
#
# Since class 0 has 49 samples, and class 1 and 2 have 50 samples each, a
# single OvO binary classifier works with a sub-kernel matrix of shape
# either (99, 99) or (100, 100).
ovo_precomputed = OneVsOneClassifier(clf_precomputed).fit(K, y)
assert ovo_precomputed.n_features_in_ == 149
assert ovr_precomputed.n_classes_ == 3
assert len(ovr_precomputed.estimators_) == 3
assert ovo_precomputed.estimators_[0].n_features_in_ == 99 # class 0 vs class 1
assert ovo_precomputed.estimators_[1].n_features_in_ == 99 # class 0 vs class 2
assert ovo_precomputed.estimators_[2].n_features_in_ == 100 # class 1 vs class 2
@pytest.mark.parametrize(
"MultiClassClassifier", [OneVsRestClassifier, OneVsOneClassifier]
)
def test_pairwise_tag(MultiClassClassifier):
clf_precomputed = svm.SVC(kernel="precomputed")
clf_notprecomputed = svm.SVC()
ovr_false = MultiClassClassifier(clf_notprecomputed)
assert not ovr_false._get_tags()["pairwise"]
ovr_true = MultiClassClassifier(clf_precomputed)
assert ovr_true._get_tags()["pairwise"]
@pytest.mark.parametrize(
"MultiClassClassifier", [OneVsRestClassifier, OneVsOneClassifier]
)
def test_pairwise_cross_val_score(MultiClassClassifier):
clf_precomputed = svm.SVC(kernel="precomputed")
clf_notprecomputed = svm.SVC(kernel="linear")
X, y = iris.data, iris.target
multiclass_clf_notprecomputed = MultiClassClassifier(clf_notprecomputed)
multiclass_clf_precomputed = MultiClassClassifier(clf_precomputed)
linear_kernel = np.dot(X, X.T)
score_not_precomputed = cross_val_score(
multiclass_clf_notprecomputed, X, y, error_score="raise"
)
score_precomputed = cross_val_score(
multiclass_clf_precomputed, linear_kernel, y, error_score="raise"
)
assert_array_equal(score_precomputed, score_not_precomputed)
@pytest.mark.parametrize(
"MultiClassClassifier", [OneVsRestClassifier, OneVsOneClassifier]
)
# FIXME: we should move this test in `estimator_checks` once we are able
# to construct meta-estimator instances
def test_support_missing_values(MultiClassClassifier):
# smoke test to check that pipeline OvR and OvO classifiers are letting
# the validation of missing values to
# the underlying pipeline or classifiers
rng = np.random.RandomState(42)
X, y = iris.data, iris.target
X = np.copy(X) # Copy to avoid that the original data is modified
mask = rng.choice([1, 0], X.shape, p=[0.1, 0.9]).astype(bool)
X[mask] = np.nan
lr = make_pipeline(SimpleImputer(), LogisticRegression(random_state=rng))
MultiClassClassifier(lr).fit(X, y).score(X, y)
@pytest.mark.parametrize("make_y", [np.ones, np.zeros])
def test_constant_int_target(make_y):
"""Check that constant y target does not raise.
Non-regression test for #21869
"""
X = np.ones((10, 2))
y = make_y((10, 1), dtype=np.int32)
ovr = OneVsRestClassifier(LogisticRegression())
ovr.fit(X, y)
y_pred = ovr.predict_proba(X)
expected = np.zeros((X.shape[0], 2))
expected[:, 0] = 1
assert_allclose(y_pred, expected)
def test_ovo_consistent_binary_classification():
"""Check that ovo is consistent with binary classifier.
Non-regression test for #13617.
"""
X, y = load_breast_cancer(return_X_y=True)
clf = KNeighborsClassifier(n_neighbors=8, weights="distance")
ovo = OneVsOneClassifier(clf)
clf.fit(X, y)
ovo.fit(X, y)
assert_array_equal(clf.predict(X), ovo.predict(X))
def test_multiclass_estimator_attribute_error():
"""Check that we raise the proper AttributeError when the final estimator
does not implement the `partial_fit` method, which is decorated with
`available_if`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28108
"""
iris = datasets.load_iris()
# LogisticRegression does not implement 'partial_fit' and should raise an
# AttributeError
clf = OneVsRestClassifier(estimator=LogisticRegression(random_state=42))
outer_msg = "This 'OneVsRestClassifier' has no attribute 'partial_fit'"
inner_msg = "'LogisticRegression' object has no attribute 'partial_fit'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
clf.partial_fit(iris.data, iris.target)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)