454 lines
12 KiB
Python
454 lines
12 KiB
Python
"""
|
|
The classes used here are for the internal use of assumptions system
|
|
only and should not be used anywhere else as these do not possess the
|
|
signatures common to SymPy objects. For general use of logic constructs
|
|
please refer to sympy.logic classes And, Or, Not, etc.
|
|
"""
|
|
from itertools import combinations, product, zip_longest
|
|
from sympy.assumptions.assume import AppliedPredicate, Predicate
|
|
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
|
|
from sympy.core.singleton import S
|
|
from sympy.logic.boolalg import Or, And, Not, Xnor
|
|
from sympy.logic.boolalg import (Equivalent, ITE, Implies, Nand, Nor, Xor)
|
|
|
|
|
|
class Literal:
|
|
"""
|
|
The smallest element of a CNF object.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
lit : Boolean expression
|
|
|
|
is_Not : bool
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q
|
|
>>> from sympy.assumptions.cnf import Literal
|
|
>>> from sympy.abc import x
|
|
>>> Literal(Q.even(x))
|
|
Literal(Q.even(x), False)
|
|
>>> Literal(~Q.even(x))
|
|
Literal(Q.even(x), True)
|
|
"""
|
|
|
|
def __new__(cls, lit, is_Not=False):
|
|
if isinstance(lit, Not):
|
|
lit = lit.args[0]
|
|
is_Not = True
|
|
elif isinstance(lit, (AND, OR, Literal)):
|
|
return ~lit if is_Not else lit
|
|
obj = super().__new__(cls)
|
|
obj.lit = lit
|
|
obj.is_Not = is_Not
|
|
return obj
|
|
|
|
@property
|
|
def arg(self):
|
|
return self.lit
|
|
|
|
def rcall(self, expr):
|
|
if callable(self.lit):
|
|
lit = self.lit(expr)
|
|
else:
|
|
try:
|
|
lit = self.lit.apply(expr)
|
|
except AttributeError:
|
|
lit = self.lit.rcall(expr)
|
|
return type(self)(lit, self.is_Not)
|
|
|
|
def __invert__(self):
|
|
is_Not = not self.is_Not
|
|
return Literal(self.lit, is_Not)
|
|
|
|
def __str__(self):
|
|
return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not)
|
|
|
|
__repr__ = __str__
|
|
|
|
def __eq__(self, other):
|
|
return self.arg == other.arg and self.is_Not == other.is_Not
|
|
|
|
def __hash__(self):
|
|
h = hash((type(self).__name__, self.arg, self.is_Not))
|
|
return h
|
|
|
|
|
|
class OR:
|
|
"""
|
|
A low-level implementation for Or
|
|
"""
|
|
def __init__(self, *args):
|
|
self._args = args
|
|
|
|
@property
|
|
def args(self):
|
|
return sorted(self._args, key=str)
|
|
|
|
def rcall(self, expr):
|
|
return type(self)(*[arg.rcall(expr)
|
|
for arg in self._args
|
|
])
|
|
|
|
def __invert__(self):
|
|
return AND(*[~arg for arg in self._args])
|
|
|
|
def __hash__(self):
|
|
return hash((type(self).__name__,) + tuple(self.args))
|
|
|
|
def __eq__(self, other):
|
|
return self.args == other.args
|
|
|
|
def __str__(self):
|
|
s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')'
|
|
return s
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
class AND:
|
|
"""
|
|
A low-level implementation for And
|
|
"""
|
|
def __init__(self, *args):
|
|
self._args = args
|
|
|
|
def __invert__(self):
|
|
return OR(*[~arg for arg in self._args])
|
|
|
|
@property
|
|
def args(self):
|
|
return sorted(self._args, key=str)
|
|
|
|
def rcall(self, expr):
|
|
return type(self)(*[arg.rcall(expr)
|
|
for arg in self._args
|
|
])
|
|
|
|
def __hash__(self):
|
|
return hash((type(self).__name__,) + tuple(self.args))
|
|
|
|
def __eq__(self, other):
|
|
return self.args == other.args
|
|
|
|
def __str__(self):
|
|
s = '('+' & '.join([str(arg) for arg in self.args])+')'
|
|
return s
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
def to_NNF(expr, composite_map=None):
|
|
"""
|
|
Generates the Negation Normal Form of any boolean expression in terms
|
|
of AND, OR, and Literal objects.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, Eq
|
|
>>> from sympy.assumptions.cnf import to_NNF
|
|
>>> from sympy.abc import x, y
|
|
>>> expr = Q.even(x) & ~Q.positive(x)
|
|
>>> to_NNF(expr)
|
|
(Literal(Q.even(x), False) & Literal(Q.positive(x), True))
|
|
|
|
Supported boolean objects are converted to corresponding predicates.
|
|
|
|
>>> to_NNF(Eq(x, y))
|
|
Literal(Q.eq(x, y), False)
|
|
|
|
If ``composite_map`` argument is given, ``to_NNF`` decomposes the
|
|
specified predicate into a combination of primitive predicates.
|
|
|
|
>>> cmap = {Q.nonpositive: Q.negative | Q.zero}
|
|
>>> to_NNF(Q.nonpositive, cmap)
|
|
(Literal(Q.negative, False) | Literal(Q.zero, False))
|
|
>>> to_NNF(Q.nonpositive(x), cmap)
|
|
(Literal(Q.negative(x), False) | Literal(Q.zero(x), False))
|
|
"""
|
|
from sympy.assumptions.ask import Q
|
|
|
|
if composite_map is None:
|
|
composite_map = {}
|
|
|
|
|
|
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
|
|
if type(expr) in binrelpreds:
|
|
pred = binrelpreds[type(expr)]
|
|
expr = pred(*expr.args)
|
|
|
|
if isinstance(expr, Not):
|
|
arg = expr.args[0]
|
|
tmp = to_NNF(arg, composite_map) # Strategy: negate the NNF of expr
|
|
return ~tmp
|
|
|
|
if isinstance(expr, Or):
|
|
return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)])
|
|
|
|
if isinstance(expr, And):
|
|
return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)])
|
|
|
|
if isinstance(expr, Nand):
|
|
tmp = AND(*[to_NNF(x, composite_map) for x in expr.args])
|
|
return ~tmp
|
|
|
|
if isinstance(expr, Nor):
|
|
tmp = OR(*[to_NNF(x, composite_map) for x in expr.args])
|
|
return ~tmp
|
|
|
|
if isinstance(expr, Xor):
|
|
cnfs = []
|
|
for i in range(0, len(expr.args) + 1, 2):
|
|
for neg in combinations(expr.args, i):
|
|
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
|
|
for s in expr.args]
|
|
cnfs.append(OR(*clause))
|
|
return AND(*cnfs)
|
|
|
|
if isinstance(expr, Xnor):
|
|
cnfs = []
|
|
for i in range(0, len(expr.args) + 1, 2):
|
|
for neg in combinations(expr.args, i):
|
|
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
|
|
for s in expr.args]
|
|
cnfs.append(OR(*clause))
|
|
return ~AND(*cnfs)
|
|
|
|
if isinstance(expr, Implies):
|
|
L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map)
|
|
return OR(~L, R)
|
|
|
|
if isinstance(expr, Equivalent):
|
|
cnfs = []
|
|
for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]):
|
|
a = to_NNF(a, composite_map)
|
|
b = to_NNF(b, composite_map)
|
|
cnfs.append(OR(~a, b))
|
|
return AND(*cnfs)
|
|
|
|
if isinstance(expr, ITE):
|
|
L = to_NNF(expr.args[0], composite_map)
|
|
M = to_NNF(expr.args[1], composite_map)
|
|
R = to_NNF(expr.args[2], composite_map)
|
|
return AND(OR(~L, M), OR(L, R))
|
|
|
|
if isinstance(expr, AppliedPredicate):
|
|
pred, args = expr.function, expr.arguments
|
|
newpred = composite_map.get(pred, None)
|
|
if newpred is not None:
|
|
return to_NNF(newpred.rcall(*args), composite_map)
|
|
|
|
if isinstance(expr, Predicate):
|
|
newpred = composite_map.get(expr, None)
|
|
if newpred is not None:
|
|
return to_NNF(newpred, composite_map)
|
|
|
|
return Literal(expr)
|
|
|
|
|
|
def distribute_AND_over_OR(expr):
|
|
"""
|
|
Distributes AND over OR in the NNF expression.
|
|
Returns the result( Conjunctive Normal Form of expression)
|
|
as a CNF object.
|
|
"""
|
|
if not isinstance(expr, (AND, OR)):
|
|
tmp = set()
|
|
tmp.add(frozenset((expr,)))
|
|
return CNF(tmp)
|
|
|
|
if isinstance(expr, OR):
|
|
return CNF.all_or(*[distribute_AND_over_OR(arg)
|
|
for arg in expr._args])
|
|
|
|
if isinstance(expr, AND):
|
|
return CNF.all_and(*[distribute_AND_over_OR(arg)
|
|
for arg in expr._args])
|
|
|
|
|
|
class CNF:
|
|
"""
|
|
Class to represent CNF of a Boolean expression.
|
|
Consists of set of clauses, which themselves are stored as
|
|
frozenset of Literal objects.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q
|
|
>>> from sympy.assumptions.cnf import CNF
|
|
>>> from sympy.abc import x
|
|
>>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x))
|
|
>>> cnf.clauses
|
|
{frozenset({Literal(Q.zero(x), True)}),
|
|
frozenset({Literal(Q.negative(x), False),
|
|
Literal(Q.positive(x), False), Literal(Q.zero(x), False)})}
|
|
"""
|
|
def __init__(self, clauses=None):
|
|
if not clauses:
|
|
clauses = set()
|
|
self.clauses = clauses
|
|
|
|
def add(self, prop):
|
|
clauses = CNF.to_CNF(prop).clauses
|
|
self.add_clauses(clauses)
|
|
|
|
def __str__(self):
|
|
s = ' & '.join(
|
|
['(' + ' | '.join([str(lit) for lit in clause]) +')'
|
|
for clause in self.clauses]
|
|
)
|
|
return s
|
|
|
|
def extend(self, props):
|
|
for p in props:
|
|
self.add(p)
|
|
return self
|
|
|
|
def copy(self):
|
|
return CNF(set(self.clauses))
|
|
|
|
def add_clauses(self, clauses):
|
|
self.clauses |= clauses
|
|
|
|
@classmethod
|
|
def from_prop(cls, prop):
|
|
res = cls()
|
|
res.add(prop)
|
|
return res
|
|
|
|
def __iand__(self, other):
|
|
self.add_clauses(other.clauses)
|
|
return self
|
|
|
|
def all_predicates(self):
|
|
predicates = set()
|
|
for c in self.clauses:
|
|
predicates |= {arg.lit for arg in c}
|
|
return predicates
|
|
|
|
def _or(self, cnf):
|
|
clauses = set()
|
|
for a, b in product(self.clauses, cnf.clauses):
|
|
tmp = set(a)
|
|
for t in b:
|
|
tmp.add(t)
|
|
clauses.add(frozenset(tmp))
|
|
return CNF(clauses)
|
|
|
|
def _and(self, cnf):
|
|
clauses = self.clauses.union(cnf.clauses)
|
|
return CNF(clauses)
|
|
|
|
def _not(self):
|
|
clss = list(self.clauses)
|
|
ll = set()
|
|
for x in clss[-1]:
|
|
ll.add(frozenset((~x,)))
|
|
ll = CNF(ll)
|
|
|
|
for rest in clss[:-1]:
|
|
p = set()
|
|
for x in rest:
|
|
p.add(frozenset((~x,)))
|
|
ll = ll._or(CNF(p))
|
|
return ll
|
|
|
|
def rcall(self, expr):
|
|
clause_list = []
|
|
for clause in self.clauses:
|
|
lits = [arg.rcall(expr) for arg in clause]
|
|
clause_list.append(OR(*lits))
|
|
expr = AND(*clause_list)
|
|
return distribute_AND_over_OR(expr)
|
|
|
|
@classmethod
|
|
def all_or(cls, *cnfs):
|
|
b = cnfs[0].copy()
|
|
for rest in cnfs[1:]:
|
|
b = b._or(rest)
|
|
return b
|
|
|
|
@classmethod
|
|
def all_and(cls, *cnfs):
|
|
b = cnfs[0].copy()
|
|
for rest in cnfs[1:]:
|
|
b = b._and(rest)
|
|
return b
|
|
|
|
@classmethod
|
|
def to_CNF(cls, expr):
|
|
from sympy.assumptions.facts import get_composite_predicates
|
|
expr = to_NNF(expr, get_composite_predicates())
|
|
expr = distribute_AND_over_OR(expr)
|
|
return expr
|
|
|
|
@classmethod
|
|
def CNF_to_cnf(cls, cnf):
|
|
"""
|
|
Converts CNF object to SymPy's boolean expression
|
|
retaining the form of expression.
|
|
"""
|
|
def remove_literal(arg):
|
|
return Not(arg.lit) if arg.is_Not else arg.lit
|
|
|
|
return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses))
|
|
|
|
|
|
class EncodedCNF:
|
|
"""
|
|
Class for encoding the CNF expression.
|
|
"""
|
|
def __init__(self, data=None, encoding=None):
|
|
if not data and not encoding:
|
|
data = []
|
|
encoding = {}
|
|
self.data = data
|
|
self.encoding = encoding
|
|
self._symbols = list(encoding.keys())
|
|
|
|
def from_cnf(self, cnf):
|
|
self._symbols = list(cnf.all_predicates())
|
|
n = len(self._symbols)
|
|
self.encoding = dict(zip(self._symbols, range(1, n + 1)))
|
|
self.data = [self.encode(clause) for clause in cnf.clauses]
|
|
|
|
@property
|
|
def symbols(self):
|
|
return self._symbols
|
|
|
|
@property
|
|
def variables(self):
|
|
return range(1, len(self._symbols) + 1)
|
|
|
|
def copy(self):
|
|
new_data = [set(clause) for clause in self.data]
|
|
return EncodedCNF(new_data, dict(self.encoding))
|
|
|
|
def add_prop(self, prop):
|
|
cnf = CNF.from_prop(prop)
|
|
self.add_from_cnf(cnf)
|
|
|
|
def add_from_cnf(self, cnf):
|
|
clauses = [self.encode(clause) for clause in cnf.clauses]
|
|
self.data += clauses
|
|
|
|
def encode_arg(self, arg):
|
|
literal = arg.lit
|
|
value = self.encoding.get(literal, None)
|
|
if value is None:
|
|
n = len(self._symbols)
|
|
self._symbols.append(literal)
|
|
value = self.encoding[literal] = n + 1
|
|
if arg.is_Not:
|
|
return -value
|
|
else:
|
|
return value
|
|
|
|
def encode(self, clause):
|
|
return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}
|