512 lines
12 KiB
Python
512 lines
12 KiB
Python
from sympy.assumptions import Predicate
|
|
from sympy.multipledispatch import Dispatcher
|
|
|
|
class SquarePredicate(Predicate):
|
|
"""
|
|
Square matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix
|
|
is a matrix with the same number of rows and columns.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> Y = MatrixSymbol('X', 2, 3)
|
|
>>> ask(Q.square(X))
|
|
True
|
|
>>> ask(Q.square(Y))
|
|
False
|
|
>>> ask(Q.square(ZeroMatrix(3, 3)))
|
|
True
|
|
>>> ask(Q.square(Identity(3)))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Square_matrix
|
|
|
|
"""
|
|
name = 'square'
|
|
handler = Dispatcher("SquareHandler", doc="Handler for Q.square.")
|
|
|
|
|
|
class SymmetricPredicate(Predicate):
|
|
"""
|
|
Symmetric matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to
|
|
its transpose. Every square diagonal matrix is a symmetric matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> Y = MatrixSymbol('Y', 2, 3)
|
|
>>> Z = MatrixSymbol('Z', 2, 2)
|
|
>>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z))
|
|
True
|
|
>>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z))
|
|
True
|
|
>>> ask(Q.symmetric(Y))
|
|
False
|
|
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Symmetric_matrix
|
|
|
|
"""
|
|
# TODO: Add handlers to make these keys work with
|
|
# actual matrices and add more examples in the docstring.
|
|
name = 'symmetric'
|
|
handler = Dispatcher("SymmetricHandler", doc="Handler for Q.symmetric.")
|
|
|
|
|
|
class InvertiblePredicate(Predicate):
|
|
"""
|
|
Invertible matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.invertible(x)`` is true iff ``x`` is an invertible matrix.
|
|
A square matrix is called invertible only if its determinant is 0.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> Y = MatrixSymbol('Y', 2, 3)
|
|
>>> Z = MatrixSymbol('Z', 2, 2)
|
|
>>> ask(Q.invertible(X*Y), Q.invertible(X))
|
|
False
|
|
>>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z))
|
|
True
|
|
>>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Invertible_matrix
|
|
|
|
"""
|
|
name = 'invertible'
|
|
handler = Dispatcher("InvertibleHandler", doc="Handler for Q.invertible.")
|
|
|
|
|
|
class OrthogonalPredicate(Predicate):
|
|
"""
|
|
Orthogonal matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix.
|
|
A square matrix ``M`` is an orthogonal matrix if it satisfies
|
|
``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of
|
|
``M`` and ``I`` is an identity matrix. Note that an orthogonal
|
|
matrix is necessarily invertible.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, Identity
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> Y = MatrixSymbol('Y', 2, 3)
|
|
>>> Z = MatrixSymbol('Z', 2, 2)
|
|
>>> ask(Q.orthogonal(Y))
|
|
False
|
|
>>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z))
|
|
True
|
|
>>> ask(Q.orthogonal(Identity(3)))
|
|
True
|
|
>>> ask(Q.invertible(X), Q.orthogonal(X))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix
|
|
|
|
"""
|
|
name = 'orthogonal'
|
|
handler = Dispatcher("OrthogonalHandler", doc="Handler for key 'orthogonal'.")
|
|
|
|
|
|
class UnitaryPredicate(Predicate):
|
|
"""
|
|
Unitary matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.unitary(x)`` is true iff ``x`` is a unitary matrix.
|
|
Unitary matrix is an analogue to orthogonal matrix. A square
|
|
matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I``
|
|
where :math:``M^T`` is the conjugate transpose matrix of ``M``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, Identity
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> Y = MatrixSymbol('Y', 2, 3)
|
|
>>> Z = MatrixSymbol('Z', 2, 2)
|
|
>>> ask(Q.unitary(Y))
|
|
False
|
|
>>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z))
|
|
True
|
|
>>> ask(Q.unitary(Identity(3)))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Unitary_matrix
|
|
|
|
"""
|
|
name = 'unitary'
|
|
handler = Dispatcher("UnitaryHandler", doc="Handler for key 'unitary'.")
|
|
|
|
|
|
class FullRankPredicate(Predicate):
|
|
"""
|
|
Fullrank matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix.
|
|
A matrix is full rank if all rows and columns of the matrix
|
|
are linearly independent. A square matrix is full rank iff
|
|
its determinant is nonzero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> ask(Q.fullrank(X.T), Q.fullrank(X))
|
|
True
|
|
>>> ask(Q.fullrank(ZeroMatrix(3, 3)))
|
|
False
|
|
>>> ask(Q.fullrank(Identity(3)))
|
|
True
|
|
|
|
"""
|
|
name = 'fullrank'
|
|
handler = Dispatcher("FullRankHandler", doc="Handler for key 'fullrank'.")
|
|
|
|
|
|
class PositiveDefinitePredicate(Predicate):
|
|
r"""
|
|
Positive definite matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
If $M$ is a :math:`n \times n` symmetric real matrix, it is said
|
|
to be positive definite if :math:`Z^TMZ` is positive for
|
|
every non-zero column vector $Z$ of $n$ real numbers.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, Identity
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> Y = MatrixSymbol('Y', 2, 3)
|
|
>>> Z = MatrixSymbol('Z', 2, 2)
|
|
>>> ask(Q.positive_definite(Y))
|
|
False
|
|
>>> ask(Q.positive_definite(Identity(3)))
|
|
True
|
|
>>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) &
|
|
... Q.positive_definite(Z))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix
|
|
|
|
"""
|
|
name = "positive_definite"
|
|
handler = Dispatcher("PositiveDefiniteHandler", doc="Handler for key 'positive_definite'.")
|
|
|
|
|
|
class UpperTriangularPredicate(Predicate):
|
|
"""
|
|
Upper triangular matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
A matrix $M$ is called upper triangular matrix if :math:`M_{ij}=0`
|
|
for :math:`i<j`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, ZeroMatrix, Identity
|
|
>>> ask(Q.upper_triangular(Identity(3)))
|
|
True
|
|
>>> ask(Q.upper_triangular(ZeroMatrix(3, 3)))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/UpperTriangularMatrix.html
|
|
|
|
"""
|
|
name = "upper_triangular"
|
|
handler = Dispatcher("UpperTriangularHandler", doc="Handler for key 'upper_triangular'.")
|
|
|
|
|
|
class LowerTriangularPredicate(Predicate):
|
|
"""
|
|
Lower triangular matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
A matrix $M$ is called lower triangular matrix if :math:`M_{ij}=0`
|
|
for :math:`i>j`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, ZeroMatrix, Identity
|
|
>>> ask(Q.lower_triangular(Identity(3)))
|
|
True
|
|
>>> ask(Q.lower_triangular(ZeroMatrix(3, 3)))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/LowerTriangularMatrix.html
|
|
|
|
"""
|
|
name = "lower_triangular"
|
|
handler = Dispatcher("LowerTriangularHandler", doc="Handler for key 'lower_triangular'.")
|
|
|
|
|
|
class DiagonalPredicate(Predicate):
|
|
"""
|
|
Diagonal matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal
|
|
matrix is a matrix in which the entries outside the main diagonal
|
|
are all zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix
|
|
>>> X = MatrixSymbol('X', 2, 2)
|
|
>>> ask(Q.diagonal(ZeroMatrix(3, 3)))
|
|
True
|
|
>>> ask(Q.diagonal(X), Q.lower_triangular(X) &
|
|
... Q.upper_triangular(X))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Diagonal_matrix
|
|
|
|
"""
|
|
name = "diagonal"
|
|
handler = Dispatcher("DiagonalHandler", doc="Handler for key 'diagonal'.")
|
|
|
|
|
|
class IntegerElementsPredicate(Predicate):
|
|
"""
|
|
Integer elements matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.integer_elements(x)`` is true iff all the elements of ``x``
|
|
are integers.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.integer(X[1, 2]), Q.integer_elements(X))
|
|
True
|
|
|
|
"""
|
|
name = "integer_elements"
|
|
handler = Dispatcher("IntegerElementsHandler", doc="Handler for key 'integer_elements'.")
|
|
|
|
|
|
class RealElementsPredicate(Predicate):
|
|
"""
|
|
Real elements matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.real_elements(x)`` is true iff all the elements of ``x``
|
|
are real numbers.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.real(X[1, 2]), Q.real_elements(X))
|
|
True
|
|
|
|
"""
|
|
name = "real_elements"
|
|
handler = Dispatcher("RealElementsHandler", doc="Handler for key 'real_elements'.")
|
|
|
|
|
|
class ComplexElementsPredicate(Predicate):
|
|
"""
|
|
Complex elements matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.complex_elements(x)`` is true iff all the elements of ``x``
|
|
are complex numbers.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.complex(X[1, 2]), Q.complex_elements(X))
|
|
True
|
|
>>> ask(Q.complex_elements(X), Q.integer_elements(X))
|
|
True
|
|
|
|
"""
|
|
name = "complex_elements"
|
|
handler = Dispatcher("ComplexElementsHandler", doc="Handler for key 'complex_elements'.")
|
|
|
|
|
|
class SingularPredicate(Predicate):
|
|
"""
|
|
Singular matrix predicate.
|
|
|
|
A matrix is singular iff the value of its determinant is 0.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.singular(X), Q.invertible(X))
|
|
False
|
|
>>> ask(Q.singular(X), ~Q.invertible(X))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/SingularMatrix.html
|
|
|
|
"""
|
|
name = "singular"
|
|
handler = Dispatcher("SingularHandler", doc="Predicate fore key 'singular'.")
|
|
|
|
|
|
class NormalPredicate(Predicate):
|
|
"""
|
|
Normal matrix predicate.
|
|
|
|
A matrix is normal if it commutes with its conjugate transpose.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.normal(X), Q.unitary(X))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Normal_matrix
|
|
|
|
"""
|
|
name = "normal"
|
|
handler = Dispatcher("NormalHandler", doc="Predicate fore key 'normal'.")
|
|
|
|
|
|
class TriangularPredicate(Predicate):
|
|
"""
|
|
Triangular matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.triangular(X)`` is true if ``X`` is one that is either lower
|
|
triangular or upper triangular.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.triangular(X), Q.upper_triangular(X))
|
|
True
|
|
>>> ask(Q.triangular(X), Q.lower_triangular(X))
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Triangular_matrix
|
|
|
|
"""
|
|
name = "triangular"
|
|
handler = Dispatcher("TriangularHandler", doc="Predicate fore key 'triangular'.")
|
|
|
|
|
|
class UnitTriangularPredicate(Predicate):
|
|
"""
|
|
Unit triangular matrix predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
A unit triangular matrix is a triangular matrix with 1s
|
|
on the diagonal.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, MatrixSymbol
|
|
>>> X = MatrixSymbol('X', 4, 4)
|
|
>>> ask(Q.triangular(X), Q.unit_triangular(X))
|
|
True
|
|
|
|
"""
|
|
name = "unit_triangular"
|
|
handler = Dispatcher("UnitTriangularHandler", doc="Predicate fore key 'unit_triangular'.")
|