75 lines
2.6 KiB
Python
75 lines
2.6 KiB
Python
from sympy.core.function import (Derivative as D, Function)
|
|
from sympy.core.relational import Eq
|
|
from sympy.core.symbol import (Symbol, symbols)
|
|
from sympy.functions.elementary.trigonometric import (cos, sin)
|
|
from sympy.testing.pytest import raises
|
|
from sympy.calculus.euler import euler_equations as euler
|
|
|
|
|
|
def test_euler_interface():
|
|
x = Function('x')
|
|
y = Symbol('y')
|
|
t = Symbol('t')
|
|
raises(TypeError, lambda: euler())
|
|
raises(TypeError, lambda: euler(D(x(t), t)*y(t), [x(t), y]))
|
|
raises(ValueError, lambda: euler(D(x(t), t)*x(y), [x(t), x(y)]))
|
|
raises(TypeError, lambda: euler(D(x(t), t)**2, x(0)))
|
|
raises(TypeError, lambda: euler(D(x(t), t)*y(t), [t]))
|
|
assert euler(D(x(t), t)**2/2, {x(t)}) == [Eq(-D(x(t), t, t), 0)]
|
|
assert euler(D(x(t), t)**2/2, x(t), {t}) == [Eq(-D(x(t), t, t), 0)]
|
|
|
|
|
|
def test_euler_pendulum():
|
|
x = Function('x')
|
|
t = Symbol('t')
|
|
L = D(x(t), t)**2/2 + cos(x(t))
|
|
assert euler(L, x(t), t) == [Eq(-sin(x(t)) - D(x(t), t, t), 0)]
|
|
|
|
|
|
def test_euler_henonheiles():
|
|
x = Function('x')
|
|
y = Function('y')
|
|
t = Symbol('t')
|
|
L = sum(D(z(t), t)**2/2 - z(t)**2/2 for z in [x, y])
|
|
L += -x(t)**2*y(t) + y(t)**3/3
|
|
assert euler(L, [x(t), y(t)], t) == [Eq(-2*x(t)*y(t) - x(t) -
|
|
D(x(t), t, t), 0),
|
|
Eq(-x(t)**2 + y(t)**2 -
|
|
y(t) - D(y(t), t, t), 0)]
|
|
|
|
|
|
def test_euler_sineg():
|
|
psi = Function('psi')
|
|
t = Symbol('t')
|
|
x = Symbol('x')
|
|
L = D(psi(t, x), t)**2/2 - D(psi(t, x), x)**2/2 + cos(psi(t, x))
|
|
assert euler(L, psi(t, x), [t, x]) == [Eq(-sin(psi(t, x)) -
|
|
D(psi(t, x), t, t) +
|
|
D(psi(t, x), x, x), 0)]
|
|
|
|
|
|
def test_euler_high_order():
|
|
# an example from hep-th/0309038
|
|
m = Symbol('m')
|
|
k = Symbol('k')
|
|
x = Function('x')
|
|
y = Function('y')
|
|
t = Symbol('t')
|
|
L = (m*D(x(t), t)**2/2 + m*D(y(t), t)**2/2 -
|
|
k*D(x(t), t)*D(y(t), t, t) + k*D(y(t), t)*D(x(t), t, t))
|
|
assert euler(L, [x(t), y(t)]) == [Eq(2*k*D(y(t), t, t, t) -
|
|
m*D(x(t), t, t), 0),
|
|
Eq(-2*k*D(x(t), t, t, t) -
|
|
m*D(y(t), t, t), 0)]
|
|
|
|
w = Symbol('w')
|
|
L = D(x(t, w), t, w)**2/2
|
|
assert euler(L) == [Eq(D(x(t, w), t, t, w, w), 0)]
|
|
|
|
def test_issue_18653():
|
|
x, y, z = symbols("x y z")
|
|
f, g, h = symbols("f g h", cls=Function, args=(x, y))
|
|
f, g, h = f(), g(), h()
|
|
expr2 = f.diff(x)*h.diff(z)
|
|
assert euler(expr2, (f,), (x, y)) == []
|