62 lines
1.5 KiB
Python
62 lines
1.5 KiB
Python
from sympy.core import Basic
|
|
from sympy.functions import adjoint, conjugate
|
|
from sympy.matrices.expressions.transpose import transpose
|
|
from sympy.matrices.expressions.matexpr import MatrixExpr
|
|
|
|
|
|
class Adjoint(MatrixExpr):
|
|
"""
|
|
The Hermitian adjoint of a matrix expression.
|
|
|
|
This is a symbolic object that simply stores its argument without
|
|
evaluating it. To actually compute the adjoint, use the ``adjoint()``
|
|
function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import MatrixSymbol, Adjoint, adjoint
|
|
>>> A = MatrixSymbol('A', 3, 5)
|
|
>>> B = MatrixSymbol('B', 5, 3)
|
|
>>> Adjoint(A*B)
|
|
Adjoint(A*B)
|
|
>>> adjoint(A*B)
|
|
Adjoint(B)*Adjoint(A)
|
|
>>> adjoint(A*B) == Adjoint(A*B)
|
|
False
|
|
>>> adjoint(A*B) == Adjoint(A*B).doit()
|
|
True
|
|
"""
|
|
is_Adjoint = True
|
|
|
|
def doit(self, **hints):
|
|
arg = self.arg
|
|
if hints.get('deep', True) and isinstance(arg, Basic):
|
|
return adjoint(arg.doit(**hints))
|
|
else:
|
|
return adjoint(self.arg)
|
|
|
|
@property
|
|
def arg(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.arg.shape[::-1]
|
|
|
|
def _entry(self, i, j, **kwargs):
|
|
return conjugate(self.arg._entry(j, i, **kwargs))
|
|
|
|
def _eval_adjoint(self):
|
|
return self.arg
|
|
|
|
def _eval_conjugate(self):
|
|
return transpose(self.arg)
|
|
|
|
def _eval_trace(self):
|
|
from sympy.matrices.expressions.trace import Trace
|
|
return conjugate(Trace(self.arg))
|
|
|
|
def _eval_transpose(self):
|
|
return conjugate(self.arg)
|