755 lines
23 KiB
Python
755 lines
23 KiB
Python
#TODO:
|
|
# -Implement Clebsch-Gordan symmetries
|
|
# -Improve simplification method
|
|
# -Implement new simplifications
|
|
"""Clebsch-Gordon Coefficients."""
|
|
|
|
from sympy.concrete.summations import Sum
|
|
from sympy.core.add import Add
|
|
from sympy.core.expr import Expr
|
|
from sympy.core.function import expand
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.power import Pow
|
|
from sympy.core.relational import Eq
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import (Wild, symbols)
|
|
from sympy.core.sympify import sympify
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.printing.pretty.stringpict import prettyForm, stringPict
|
|
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j
|
|
from sympy.printing.precedence import PRECEDENCE
|
|
|
|
__all__ = [
|
|
'CG',
|
|
'Wigner3j',
|
|
'Wigner6j',
|
|
'Wigner9j',
|
|
'cg_simp'
|
|
]
|
|
|
|
#-----------------------------------------------------------------------------
|
|
# CG Coefficients
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
class Wigner3j(Expr):
|
|
"""Class for the Wigner-3j symbols.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Wigner 3j-symbols are coefficients determined by the coupling of
|
|
two angular momenta. When created, they are expressed as symbolic
|
|
quantities that, for numerical parameters, can be evaluated using the
|
|
``.doit()`` method [1]_.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
j1, m1, j2, m2, j3, m3 : Number, Symbol
|
|
Terms determining the angular momentum of coupled angular momentum
|
|
systems.
|
|
|
|
Examples
|
|
========
|
|
|
|
Declare a Wigner-3j coefficient and calculate its value
|
|
|
|
>>> from sympy.physics.quantum.cg import Wigner3j
|
|
>>> w3j = Wigner3j(6,0,4,0,2,0)
|
|
>>> w3j
|
|
Wigner3j(6, 0, 4, 0, 2, 0)
|
|
>>> w3j.doit()
|
|
sqrt(715)/143
|
|
|
|
See Also
|
|
========
|
|
|
|
CG: Clebsch-Gordan coefficients
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
|
"""
|
|
|
|
is_commutative = True
|
|
|
|
def __new__(cls, j1, m1, j2, m2, j3, m3):
|
|
args = map(sympify, (j1, m1, j2, m2, j3, m3))
|
|
return Expr.__new__(cls, *args)
|
|
|
|
@property
|
|
def j1(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def m1(self):
|
|
return self.args[1]
|
|
|
|
@property
|
|
def j2(self):
|
|
return self.args[2]
|
|
|
|
@property
|
|
def m2(self):
|
|
return self.args[3]
|
|
|
|
@property
|
|
def j3(self):
|
|
return self.args[4]
|
|
|
|
@property
|
|
def m3(self):
|
|
return self.args[5]
|
|
|
|
@property
|
|
def is_symbolic(self):
|
|
return not all(arg.is_number for arg in self.args)
|
|
|
|
# This is modified from the _print_Matrix method
|
|
def _pretty(self, printer, *args):
|
|
m = ((printer._print(self.j1), printer._print(self.m1)),
|
|
(printer._print(self.j2), printer._print(self.m2)),
|
|
(printer._print(self.j3), printer._print(self.m3)))
|
|
hsep = 2
|
|
vsep = 1
|
|
maxw = [-1]*3
|
|
for j in range(3):
|
|
maxw[j] = max([ m[j][i].width() for i in range(2) ])
|
|
D = None
|
|
for i in range(2):
|
|
D_row = None
|
|
for j in range(3):
|
|
s = m[j][i]
|
|
wdelta = maxw[j] - s.width()
|
|
wleft = wdelta //2
|
|
wright = wdelta - wleft
|
|
|
|
s = prettyForm(*s.right(' '*wright))
|
|
s = prettyForm(*s.left(' '*wleft))
|
|
|
|
if D_row is None:
|
|
D_row = s
|
|
continue
|
|
D_row = prettyForm(*D_row.right(' '*hsep))
|
|
D_row = prettyForm(*D_row.right(s))
|
|
if D is None:
|
|
D = D_row
|
|
continue
|
|
for _ in range(vsep):
|
|
D = prettyForm(*D.below(' '))
|
|
D = prettyForm(*D.below(D_row))
|
|
D = prettyForm(*D.parens())
|
|
return D
|
|
|
|
def _latex(self, printer, *args):
|
|
label = map(printer._print, (self.j1, self.j2, self.j3,
|
|
self.m1, self.m2, self.m3))
|
|
return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \
|
|
tuple(label)
|
|
|
|
def doit(self, **hints):
|
|
if self.is_symbolic:
|
|
raise ValueError("Coefficients must be numerical")
|
|
return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
|
|
|
|
|
|
class CG(Wigner3j):
|
|
r"""Class for Clebsch-Gordan coefficient.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Clebsch-Gordan coefficients describe the angular momentum coupling between
|
|
two systems. The coefficients give the expansion of a coupled total angular
|
|
momentum state and an uncoupled tensor product state. The Clebsch-Gordan
|
|
coefficients are defined as [1]_:
|
|
|
|
.. math ::
|
|
C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle
|
|
|
|
Parameters
|
|
==========
|
|
|
|
j1, m1, j2, m2 : Number, Symbol
|
|
Angular momenta of states 1 and 2.
|
|
|
|
j3, m3: Number, Symbol
|
|
Total angular momentum of the coupled system.
|
|
|
|
Examples
|
|
========
|
|
|
|
Define a Clebsch-Gordan coefficient and evaluate its value
|
|
|
|
>>> from sympy.physics.quantum.cg import CG
|
|
>>> from sympy import S
|
|
>>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
|
|
>>> cg
|
|
CG(3/2, 3/2, 1/2, -1/2, 1, 1)
|
|
>>> cg.doit()
|
|
sqrt(3)/2
|
|
>>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit()
|
|
sqrt(2)/2
|
|
|
|
|
|
Compare [2]_.
|
|
|
|
See Also
|
|
========
|
|
|
|
Wigner3j: Wigner-3j symbols
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
|
.. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions
|
|
<https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_
|
|
in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys.
|
|
2020, 083C01 (2020).
|
|
"""
|
|
precedence = PRECEDENCE["Pow"] - 1
|
|
|
|
def doit(self, **hints):
|
|
if self.is_symbolic:
|
|
raise ValueError("Coefficients must be numerical")
|
|
return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
|
|
|
|
def _pretty(self, printer, *args):
|
|
bot = printer._print_seq(
|
|
(self.j1, self.m1, self.j2, self.m2), delimiter=',')
|
|
top = printer._print_seq((self.j3, self.m3), delimiter=',')
|
|
|
|
pad = max(top.width(), bot.width())
|
|
bot = prettyForm(*bot.left(' '))
|
|
top = prettyForm(*top.left(' '))
|
|
|
|
if not pad == bot.width():
|
|
bot = prettyForm(*bot.right(' '*(pad - bot.width())))
|
|
if not pad == top.width():
|
|
top = prettyForm(*top.right(' '*(pad - top.width())))
|
|
s = stringPict('C' + ' '*pad)
|
|
s = prettyForm(*s.below(bot))
|
|
s = prettyForm(*s.above(top))
|
|
return s
|
|
|
|
def _latex(self, printer, *args):
|
|
label = map(printer._print, (self.j3, self.m3, self.j1,
|
|
self.m1, self.j2, self.m2))
|
|
return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label)
|
|
|
|
|
|
class Wigner6j(Expr):
|
|
"""Class for the Wigner-6j symbols
|
|
|
|
See Also
|
|
========
|
|
|
|
Wigner3j: Wigner-3j symbols
|
|
|
|
"""
|
|
def __new__(cls, j1, j2, j12, j3, j, j23):
|
|
args = map(sympify, (j1, j2, j12, j3, j, j23))
|
|
return Expr.__new__(cls, *args)
|
|
|
|
@property
|
|
def j1(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def j2(self):
|
|
return self.args[1]
|
|
|
|
@property
|
|
def j12(self):
|
|
return self.args[2]
|
|
|
|
@property
|
|
def j3(self):
|
|
return self.args[3]
|
|
|
|
@property
|
|
def j(self):
|
|
return self.args[4]
|
|
|
|
@property
|
|
def j23(self):
|
|
return self.args[5]
|
|
|
|
@property
|
|
def is_symbolic(self):
|
|
return not all(arg.is_number for arg in self.args)
|
|
|
|
# This is modified from the _print_Matrix method
|
|
def _pretty(self, printer, *args):
|
|
m = ((printer._print(self.j1), printer._print(self.j3)),
|
|
(printer._print(self.j2), printer._print(self.j)),
|
|
(printer._print(self.j12), printer._print(self.j23)))
|
|
hsep = 2
|
|
vsep = 1
|
|
maxw = [-1]*3
|
|
for j in range(3):
|
|
maxw[j] = max([ m[j][i].width() for i in range(2) ])
|
|
D = None
|
|
for i in range(2):
|
|
D_row = None
|
|
for j in range(3):
|
|
s = m[j][i]
|
|
wdelta = maxw[j] - s.width()
|
|
wleft = wdelta //2
|
|
wright = wdelta - wleft
|
|
|
|
s = prettyForm(*s.right(' '*wright))
|
|
s = prettyForm(*s.left(' '*wleft))
|
|
|
|
if D_row is None:
|
|
D_row = s
|
|
continue
|
|
D_row = prettyForm(*D_row.right(' '*hsep))
|
|
D_row = prettyForm(*D_row.right(s))
|
|
if D is None:
|
|
D = D_row
|
|
continue
|
|
for _ in range(vsep):
|
|
D = prettyForm(*D.below(' '))
|
|
D = prettyForm(*D.below(D_row))
|
|
D = prettyForm(*D.parens(left='{', right='}'))
|
|
return D
|
|
|
|
def _latex(self, printer, *args):
|
|
label = map(printer._print, (self.j1, self.j2, self.j12,
|
|
self.j3, self.j, self.j23))
|
|
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
|
|
tuple(label)
|
|
|
|
def doit(self, **hints):
|
|
if self.is_symbolic:
|
|
raise ValueError("Coefficients must be numerical")
|
|
return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23)
|
|
|
|
|
|
class Wigner9j(Expr):
|
|
"""Class for the Wigner-9j symbols
|
|
|
|
See Also
|
|
========
|
|
|
|
Wigner3j: Wigner-3j symbols
|
|
|
|
"""
|
|
def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
|
|
args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
|
|
return Expr.__new__(cls, *args)
|
|
|
|
@property
|
|
def j1(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def j2(self):
|
|
return self.args[1]
|
|
|
|
@property
|
|
def j12(self):
|
|
return self.args[2]
|
|
|
|
@property
|
|
def j3(self):
|
|
return self.args[3]
|
|
|
|
@property
|
|
def j4(self):
|
|
return self.args[4]
|
|
|
|
@property
|
|
def j34(self):
|
|
return self.args[5]
|
|
|
|
@property
|
|
def j13(self):
|
|
return self.args[6]
|
|
|
|
@property
|
|
def j24(self):
|
|
return self.args[7]
|
|
|
|
@property
|
|
def j(self):
|
|
return self.args[8]
|
|
|
|
@property
|
|
def is_symbolic(self):
|
|
return not all(arg.is_number for arg in self.args)
|
|
|
|
# This is modified from the _print_Matrix method
|
|
def _pretty(self, printer, *args):
|
|
m = (
|
|
(printer._print(
|
|
self.j1), printer._print(self.j3), printer._print(self.j13)),
|
|
(printer._print(
|
|
self.j2), printer._print(self.j4), printer._print(self.j24)),
|
|
(printer._print(self.j12), printer._print(self.j34), printer._print(self.j)))
|
|
hsep = 2
|
|
vsep = 1
|
|
maxw = [-1]*3
|
|
for j in range(3):
|
|
maxw[j] = max([ m[j][i].width() for i in range(3) ])
|
|
D = None
|
|
for i in range(3):
|
|
D_row = None
|
|
for j in range(3):
|
|
s = m[j][i]
|
|
wdelta = maxw[j] - s.width()
|
|
wleft = wdelta //2
|
|
wright = wdelta - wleft
|
|
|
|
s = prettyForm(*s.right(' '*wright))
|
|
s = prettyForm(*s.left(' '*wleft))
|
|
|
|
if D_row is None:
|
|
D_row = s
|
|
continue
|
|
D_row = prettyForm(*D_row.right(' '*hsep))
|
|
D_row = prettyForm(*D_row.right(s))
|
|
if D is None:
|
|
D = D_row
|
|
continue
|
|
for _ in range(vsep):
|
|
D = prettyForm(*D.below(' '))
|
|
D = prettyForm(*D.below(D_row))
|
|
D = prettyForm(*D.parens(left='{', right='}'))
|
|
return D
|
|
|
|
def _latex(self, printer, *args):
|
|
label = map(printer._print, (self.j1, self.j2, self.j12, self.j3,
|
|
self.j4, self.j34, self.j13, self.j24, self.j))
|
|
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
|
|
tuple(label)
|
|
|
|
def doit(self, **hints):
|
|
if self.is_symbolic:
|
|
raise ValueError("Coefficients must be numerical")
|
|
return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)
|
|
|
|
|
|
def cg_simp(e):
|
|
"""Simplify and combine CG coefficients.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
This function uses various symmetry and properties of sums and
|
|
products of Clebsch-Gordan coefficients to simplify statements
|
|
involving these terms [1]_.
|
|
|
|
Examples
|
|
========
|
|
|
|
Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to
|
|
2*a+1
|
|
|
|
>>> from sympy.physics.quantum.cg import CG, cg_simp
|
|
>>> a = CG(1,1,0,0,1,1)
|
|
>>> b = CG(1,0,0,0,1,0)
|
|
>>> c = CG(1,-1,0,0,1,-1)
|
|
>>> cg_simp(a+b+c)
|
|
3
|
|
|
|
See Also
|
|
========
|
|
|
|
CG: Clebsh-Gordan coefficients
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
|
"""
|
|
if isinstance(e, Add):
|
|
return _cg_simp_add(e)
|
|
elif isinstance(e, Sum):
|
|
return _cg_simp_sum(e)
|
|
elif isinstance(e, Mul):
|
|
return Mul(*[cg_simp(arg) for arg in e.args])
|
|
elif isinstance(e, Pow):
|
|
return Pow(cg_simp(e.base), e.exp)
|
|
else:
|
|
return e
|
|
|
|
|
|
def _cg_simp_add(e):
|
|
#TODO: Improve simplification method
|
|
"""Takes a sum of terms involving Clebsch-Gordan coefficients and
|
|
simplifies the terms.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
First, we create two lists, cg_part, which is all the terms involving CG
|
|
coefficients, and other_part, which is all other terms. The cg_part list
|
|
is then passed to the simplification methods, which return the new cg_part
|
|
and any additional terms that are added to other_part
|
|
"""
|
|
cg_part = []
|
|
other_part = []
|
|
|
|
e = expand(e)
|
|
for arg in e.args:
|
|
if arg.has(CG):
|
|
if isinstance(arg, Sum):
|
|
other_part.append(_cg_simp_sum(arg))
|
|
elif isinstance(arg, Mul):
|
|
terms = 1
|
|
for term in arg.args:
|
|
if isinstance(term, Sum):
|
|
terms *= _cg_simp_sum(term)
|
|
else:
|
|
terms *= term
|
|
if terms.has(CG):
|
|
cg_part.append(terms)
|
|
else:
|
|
other_part.append(terms)
|
|
else:
|
|
cg_part.append(arg)
|
|
else:
|
|
other_part.append(arg)
|
|
|
|
cg_part, other = _check_varsh_871_1(cg_part)
|
|
other_part.append(other)
|
|
cg_part, other = _check_varsh_871_2(cg_part)
|
|
other_part.append(other)
|
|
cg_part, other = _check_varsh_872_9(cg_part)
|
|
other_part.append(other)
|
|
return Add(*cg_part) + Add(*other_part)
|
|
|
|
|
|
def _check_varsh_871_1(term_list):
|
|
# Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0)
|
|
a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt'))
|
|
expr = lt*CG(a, alpha, b, 0, a, alpha)
|
|
simp = (2*a + 1)*KroneckerDelta(b, 0)
|
|
sign = lt/abs(lt)
|
|
build_expr = 2*a + 1
|
|
index_expr = a + alpha
|
|
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr)
|
|
|
|
|
|
def _check_varsh_871_2(term_list):
|
|
# Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a))
|
|
a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt'))
|
|
expr = lt*CG(a, alpha, a, -alpha, c, 0)
|
|
simp = sqrt(2*a + 1)*KroneckerDelta(c, 0)
|
|
sign = (-1)**(a - alpha)*lt/abs(lt)
|
|
build_expr = 2*a + 1
|
|
index_expr = a + alpha
|
|
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr)
|
|
|
|
|
|
def _check_varsh_872_9(term_list):
|
|
# Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b))
|
|
a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, (
|
|
'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt'))
|
|
# Case alpha==alphap, beta==betap
|
|
|
|
# For numerical alpha,beta
|
|
expr = lt*CG(a, alpha, b, beta, c, gamma)**2
|
|
simp = S.One
|
|
sign = lt/abs(lt)
|
|
x = abs(a - b)
|
|
y = abs(alpha + beta)
|
|
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
|
|
index_expr = a + b - c
|
|
term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
|
|
|
|
# For symbolic alpha,beta
|
|
x = abs(a - b)
|
|
y = a + b
|
|
build_expr = (y + 1 - x)*(x + y + 1)
|
|
index_expr = (c - x)*(x + c) + c + gamma
|
|
term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
|
|
|
|
# Case alpha!=alphap or beta!=betap
|
|
# Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term
|
|
# For numerical alpha,alphap,beta,betap
|
|
expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma)
|
|
simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap)
|
|
sign = S.One
|
|
x = abs(a - b)
|
|
y = abs(alpha + beta)
|
|
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
|
|
index_expr = a + b - c
|
|
term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
|
|
|
|
# For symbolic alpha,alphap,beta,betap
|
|
x = abs(a - b)
|
|
y = a + b
|
|
build_expr = (y + 1 - x)*(x + y + 1)
|
|
index_expr = (c - x)*(x + c) + c + gamma
|
|
term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
|
|
|
|
return term_list, other1 + other2 + other4
|
|
|
|
|
|
def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr):
|
|
""" Checks for simplifications that can be made, returning a tuple of the
|
|
simplified list of terms and any terms generated by simplification.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr: expression
|
|
The expression with Wild terms that will be matched to the terms in
|
|
the sum
|
|
|
|
simp: expression
|
|
The expression with Wild terms that is substituted in place of the CG
|
|
terms in the case of simplification
|
|
|
|
sign: expression
|
|
The expression with Wild terms denoting the sign that is on expr that
|
|
must match
|
|
|
|
lt: expression
|
|
The expression with Wild terms that gives the leading term of the
|
|
matched expr
|
|
|
|
term_list: list
|
|
A list of all of the terms is the sum to be simplified
|
|
|
|
variables: list
|
|
A list of all the variables that appears in expr
|
|
|
|
dep_variables: list
|
|
A list of the variables that must match for all the terms in the sum,
|
|
i.e. the dependent variables
|
|
|
|
build_index_expr: expression
|
|
Expression with Wild terms giving the number of elements in cg_index
|
|
|
|
index_expr: expression
|
|
Expression with Wild terms giving the index terms have when storing
|
|
them to cg_index
|
|
|
|
"""
|
|
other_part = 0
|
|
i = 0
|
|
while i < len(term_list):
|
|
sub_1 = _check_cg(term_list[i], expr, len(variables))
|
|
if sub_1 is None:
|
|
i += 1
|
|
continue
|
|
if not build_index_expr.subs(sub_1).is_number:
|
|
i += 1
|
|
continue
|
|
sub_dep = [(x, sub_1[x]) for x in dep_variables]
|
|
cg_index = [None]*build_index_expr.subs(sub_1)
|
|
for j in range(i, len(term_list)):
|
|
sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep)))
|
|
if sub_2 is None:
|
|
continue
|
|
if not index_expr.subs(sub_dep).subs(sub_2).is_number:
|
|
continue
|
|
cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2)
|
|
if not any(i is None for i in cg_index):
|
|
min_lt = min(*[ abs(term[2]) for term in cg_index ])
|
|
indices = [ term[0] for term in cg_index]
|
|
indices.sort()
|
|
indices.reverse()
|
|
[ term_list.pop(j) for j in indices ]
|
|
for term in cg_index:
|
|
if abs(term[2]) > min_lt:
|
|
term_list.append( (term[2] - min_lt*term[3])*term[1] )
|
|
other_part += min_lt*(sign*simp).subs(sub_1)
|
|
else:
|
|
i += 1
|
|
return term_list, other_part
|
|
|
|
|
|
def _check_cg(cg_term, expr, length, sign=None):
|
|
"""Checks whether a term matches the given expression"""
|
|
# TODO: Check for symmetries
|
|
matches = cg_term.match(expr)
|
|
if matches is None:
|
|
return
|
|
if sign is not None:
|
|
if not isinstance(sign, tuple):
|
|
raise TypeError('sign must be a tuple')
|
|
if not sign[0] == (sign[1]).subs(matches):
|
|
return
|
|
if len(matches) == length:
|
|
return matches
|
|
|
|
|
|
def _cg_simp_sum(e):
|
|
e = _check_varsh_sum_871_1(e)
|
|
e = _check_varsh_sum_871_2(e)
|
|
e = _check_varsh_sum_872_4(e)
|
|
return e
|
|
|
|
|
|
def _check_varsh_sum_871_1(e):
|
|
a = Wild('a')
|
|
alpha = symbols('alpha')
|
|
b = Wild('b')
|
|
match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)))
|
|
if match is not None and len(match) == 2:
|
|
return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match)
|
|
return e
|
|
|
|
|
|
def _check_varsh_sum_871_2(e):
|
|
a = Wild('a')
|
|
alpha = symbols('alpha')
|
|
c = Wild('c')
|
|
match = e.match(
|
|
Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a)))
|
|
if match is not None and len(match) == 2:
|
|
return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match)
|
|
return e
|
|
|
|
|
|
def _check_varsh_sum_872_4(e):
|
|
alpha = symbols('alpha')
|
|
beta = symbols('beta')
|
|
a = Wild('a')
|
|
b = Wild('b')
|
|
c = Wild('c')
|
|
cp = Wild('cp')
|
|
gamma = Wild('gamma')
|
|
gammap = Wild('gammap')
|
|
cg1 = CG(a, alpha, b, beta, c, gamma)
|
|
cg2 = CG(a, alpha, b, beta, cp, gammap)
|
|
match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b)))
|
|
if match1 is not None and len(match1) == 6:
|
|
return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1)
|
|
match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b)))
|
|
if match2 is not None and len(match2) == 4:
|
|
return S.One
|
|
return e
|
|
|
|
|
|
def _cg_list(term):
|
|
if isinstance(term, CG):
|
|
return (term,), 1, 1
|
|
cg = []
|
|
coeff = 1
|
|
if not isinstance(term, (Mul, Pow)):
|
|
raise NotImplementedError('term must be CG, Add, Mul or Pow')
|
|
if isinstance(term, Pow) and term.exp.is_number:
|
|
if term.exp.is_number:
|
|
[ cg.append(term.base) for _ in range(term.exp) ]
|
|
else:
|
|
return (term,), 1, 1
|
|
if isinstance(term, Mul):
|
|
for arg in term.args:
|
|
if isinstance(arg, CG):
|
|
cg.append(arg)
|
|
else:
|
|
coeff *= arg
|
|
return cg, coeff, coeff/abs(coeff)
|