Traktor/myenv/Lib/site-packages/sympy/physics/quantum/commutator.py
2024-05-23 01:57:24 +02:00

240 lines
7.3 KiB
Python

"""The commutator: [A,B] = A*B - B*A."""
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.printing.pretty.stringpict import prettyForm
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.operator import Operator
__all__ = [
'Commutator'
]
#-----------------------------------------------------------------------------
# Commutator
#-----------------------------------------------------------------------------
class Commutator(Expr):
"""The standard commutator, in an unevaluated state.
Explanation
===========
Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This
class returns the commutator in an unevaluated form. To evaluate the
commutator, use the ``.doit()`` method.
Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The
arguments of the commutator are put into canonical order using ``__cmp__``.
If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``.
Parameters
==========
A : Expr
The first argument of the commutator [A,B].
B : Expr
The second argument of the commutator [A,B].
Examples
========
>>> from sympy.physics.quantum import Commutator, Dagger, Operator
>>> from sympy.abc import x, y
>>> A = Operator('A')
>>> B = Operator('B')
>>> C = Operator('C')
Create a commutator and use ``.doit()`` to evaluate it:
>>> comm = Commutator(A, B)
>>> comm
[A,B]
>>> comm.doit()
A*B - B*A
The commutator orders it arguments in canonical order:
>>> comm = Commutator(B, A); comm
-[A,B]
Commutative constants are factored out:
>>> Commutator(3*x*A, x*y*B)
3*x**2*y*[A,B]
Using ``.expand(commutator=True)``, the standard commutator expansion rules
can be applied:
>>> Commutator(A+B, C).expand(commutator=True)
[A,C] + [B,C]
>>> Commutator(A, B+C).expand(commutator=True)
[A,B] + [A,C]
>>> Commutator(A*B, C).expand(commutator=True)
[A,C]*B + A*[B,C]
>>> Commutator(A, B*C).expand(commutator=True)
[A,B]*C + B*[A,C]
Adjoint operations applied to the commutator are properly applied to the
arguments:
>>> Dagger(Commutator(A, B))
-[Dagger(A),Dagger(B)]
References
==========
.. [1] https://en.wikipedia.org/wiki/Commutator
"""
is_commutative = False
def __new__(cls, A, B):
r = cls.eval(A, B)
if r is not None:
return r
obj = Expr.__new__(cls, A, B)
return obj
@classmethod
def eval(cls, a, b):
if not (a and b):
return S.Zero
if a == b:
return S.Zero
if a.is_commutative or b.is_commutative:
return S.Zero
# [xA,yB] -> xy*[A,B]
ca, nca = a.args_cnc()
cb, ncb = b.args_cnc()
c_part = ca + cb
if c_part:
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
# Canonical ordering of arguments
# The Commutator [A, B] is in canonical form if A < B.
if a.compare(b) == 1:
return S.NegativeOne*cls(b, a)
def _expand_pow(self, A, B, sign):
exp = A.exp
if not exp.is_integer or not exp.is_constant() or abs(exp) <= 1:
# nothing to do
return self
base = A.base
if exp.is_negative:
base = A.base**-1
exp = -exp
comm = Commutator(base, B).expand(commutator=True)
result = base**(exp - 1) * comm
for i in range(1, exp):
result += base**(exp - 1 - i) * comm * base**i
return sign*result.expand()
def _eval_expand_commutator(self, **hints):
A = self.args[0]
B = self.args[1]
if isinstance(A, Add):
# [A + B, C] -> [A, C] + [B, C]
sargs = []
for term in A.args:
comm = Commutator(term, B)
if isinstance(comm, Commutator):
comm = comm._eval_expand_commutator()
sargs.append(comm)
return Add(*sargs)
elif isinstance(B, Add):
# [A, B + C] -> [A, B] + [A, C]
sargs = []
for term in B.args:
comm = Commutator(A, term)
if isinstance(comm, Commutator):
comm = comm._eval_expand_commutator()
sargs.append(comm)
return Add(*sargs)
elif isinstance(A, Mul):
# [A*B, C] -> A*[B, C] + [A, C]*B
a = A.args[0]
b = Mul(*A.args[1:])
c = B
comm1 = Commutator(b, c)
comm2 = Commutator(a, c)
if isinstance(comm1, Commutator):
comm1 = comm1._eval_expand_commutator()
if isinstance(comm2, Commutator):
comm2 = comm2._eval_expand_commutator()
first = Mul(a, comm1)
second = Mul(comm2, b)
return Add(first, second)
elif isinstance(B, Mul):
# [A, B*C] -> [A, B]*C + B*[A, C]
a = A
b = B.args[0]
c = Mul(*B.args[1:])
comm1 = Commutator(a, b)
comm2 = Commutator(a, c)
if isinstance(comm1, Commutator):
comm1 = comm1._eval_expand_commutator()
if isinstance(comm2, Commutator):
comm2 = comm2._eval_expand_commutator()
first = Mul(comm1, c)
second = Mul(b, comm2)
return Add(first, second)
elif isinstance(A, Pow):
# [A**n, C] -> A**(n - 1)*[A, C] + A**(n - 2)*[A, C]*A + ... + [A, C]*A**(n-1)
return self._expand_pow(A, B, 1)
elif isinstance(B, Pow):
# [A, C**n] -> C**(n - 1)*[C, A] + C**(n - 2)*[C, A]*C + ... + [C, A]*C**(n-1)
return self._expand_pow(B, A, -1)
# No changes, so return self
return self
def doit(self, **hints):
""" Evaluate commutator """
A = self.args[0]
B = self.args[1]
if isinstance(A, Operator) and isinstance(B, Operator):
try:
comm = A._eval_commutator(B, **hints)
except NotImplementedError:
try:
comm = -1*B._eval_commutator(A, **hints)
except NotImplementedError:
comm = None
if comm is not None:
return comm.doit(**hints)
return (A*B - B*A).doit(**hints)
def _eval_adjoint(self):
return Commutator(Dagger(self.args[1]), Dagger(self.args[0]))
def _sympyrepr(self, printer, *args):
return "%s(%s,%s)" % (
self.__class__.__name__, printer._print(
self.args[0]), printer._print(self.args[1])
)
def _sympystr(self, printer, *args):
return "[%s,%s]" % (
printer._print(self.args[0]), printer._print(self.args[1]))
def _pretty(self, printer, *args):
pform = printer._print(self.args[0], *args)
pform = prettyForm(*pform.right(prettyForm(',')))
pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
pform = prettyForm(*pform.parens(left='[', right=']'))
return pform
def _latex(self, printer, *args):
return "\\left[%s,%s\\right]" % tuple([
printer._print(arg, *args) for arg in self.args])