680 lines
20 KiB
Python
680 lines
20 KiB
Python
"""Simple Harmonic Oscillator 1-Dimension"""
|
|
|
|
from sympy.core.numbers import (I, Integer)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.physics.quantum.constants import hbar
|
|
from sympy.physics.quantum.operator import Operator
|
|
from sympy.physics.quantum.state import Bra, Ket, State
|
|
from sympy.physics.quantum.qexpr import QExpr
|
|
from sympy.physics.quantum.cartesian import X, Px
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.physics.quantum.hilbert import ComplexSpace
|
|
from sympy.physics.quantum.matrixutils import matrix_zeros
|
|
|
|
#------------------------------------------------------------------------------
|
|
|
|
class SHOOp(Operator):
|
|
"""A base class for the SHO Operators.
|
|
|
|
We are limiting the number of arguments to be 1.
|
|
|
|
"""
|
|
|
|
@classmethod
|
|
def _eval_args(cls, args):
|
|
args = QExpr._eval_args(args)
|
|
if len(args) == 1:
|
|
return args
|
|
else:
|
|
raise ValueError("Too many arguments")
|
|
|
|
@classmethod
|
|
def _eval_hilbert_space(cls, label):
|
|
return ComplexSpace(S.Infinity)
|
|
|
|
class RaisingOp(SHOOp):
|
|
"""The Raising Operator or a^dagger.
|
|
|
|
When a^dagger acts on a state it raises the state up by one. Taking
|
|
the adjoint of a^dagger returns 'a', the Lowering Operator. a^dagger
|
|
can be rewritten in terms of position and momentum. We can represent
|
|
a^dagger as a matrix, which will be its default basis.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : tuple
|
|
The list of numbers or parameters that uniquely specify the
|
|
operator.
|
|
|
|
Examples
|
|
========
|
|
|
|
Create a Raising Operator and rewrite it in terms of position and
|
|
momentum, and show that taking its adjoint returns 'a':
|
|
|
|
>>> from sympy.physics.quantum.sho1d import RaisingOp
|
|
>>> from sympy.physics.quantum import Dagger
|
|
|
|
>>> ad = RaisingOp('a')
|
|
>>> ad.rewrite('xp').doit()
|
|
sqrt(2)*(m*omega*X - I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
|
|
|
|
>>> Dagger(ad)
|
|
a
|
|
|
|
Taking the commutator of a^dagger with other Operators:
|
|
|
|
>>> from sympy.physics.quantum import Commutator
|
|
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
|
|
>>> from sympy.physics.quantum.sho1d import NumberOp
|
|
|
|
>>> ad = RaisingOp('a')
|
|
>>> a = LoweringOp('a')
|
|
>>> N = NumberOp('N')
|
|
>>> Commutator(ad, a).doit()
|
|
-1
|
|
>>> Commutator(ad, N).doit()
|
|
-RaisingOp(a)
|
|
|
|
Apply a^dagger to a state:
|
|
|
|
>>> from sympy.physics.quantum import qapply
|
|
>>> from sympy.physics.quantum.sho1d import RaisingOp, SHOKet
|
|
|
|
>>> ad = RaisingOp('a')
|
|
>>> k = SHOKet('k')
|
|
>>> qapply(ad*k)
|
|
sqrt(k + 1)*|k + 1>
|
|
|
|
Matrix Representation
|
|
|
|
>>> from sympy.physics.quantum.sho1d import RaisingOp
|
|
>>> from sympy.physics.quantum.represent import represent
|
|
>>> ad = RaisingOp('a')
|
|
>>> represent(ad, basis=N, ndim=4, format='sympy')
|
|
Matrix([
|
|
[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, sqrt(2), 0, 0],
|
|
[0, 0, sqrt(3), 0]])
|
|
|
|
"""
|
|
|
|
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
|
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
|
|
S.NegativeOne*I*Px + m*omega*X)
|
|
|
|
def _eval_adjoint(self):
|
|
return LoweringOp(*self.args)
|
|
|
|
def _eval_commutator_LoweringOp(self, other):
|
|
return S.NegativeOne
|
|
|
|
def _eval_commutator_NumberOp(self, other):
|
|
return S.NegativeOne*self
|
|
|
|
def _apply_operator_SHOKet(self, ket, **options):
|
|
temp = ket.n + S.One
|
|
return sqrt(temp)*SHOKet(temp)
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_NumberOp(None, **options)
|
|
|
|
def _represent_XOp(self, basis, **options):
|
|
# This logic is good but the underlying position
|
|
# representation logic is broken.
|
|
# temp = self.rewrite('xp').doit()
|
|
# result = represent(temp, basis=X)
|
|
# return result
|
|
raise NotImplementedError('Position representation is not implemented')
|
|
|
|
def _represent_NumberOp(self, basis, **options):
|
|
ndim_info = options.get('ndim', 4)
|
|
format = options.get('format','sympy')
|
|
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
|
for i in range(ndim_info - 1):
|
|
value = sqrt(i + 1)
|
|
if format == 'scipy.sparse':
|
|
value = float(value)
|
|
matrix[i + 1, i] = value
|
|
if format == 'scipy.sparse':
|
|
matrix = matrix.tocsr()
|
|
return matrix
|
|
|
|
#--------------------------------------------------------------------------
|
|
# Printing Methods
|
|
#--------------------------------------------------------------------------
|
|
|
|
def _print_contents(self, printer, *args):
|
|
arg0 = printer._print(self.args[0], *args)
|
|
return '%s(%s)' % (self.__class__.__name__, arg0)
|
|
|
|
def _print_contents_pretty(self, printer, *args):
|
|
from sympy.printing.pretty.stringpict import prettyForm
|
|
pform = printer._print(self.args[0], *args)
|
|
pform = pform**prettyForm('\N{DAGGER}')
|
|
return pform
|
|
|
|
def _print_contents_latex(self, printer, *args):
|
|
arg = printer._print(self.args[0])
|
|
return '%s^{\\dagger}' % arg
|
|
|
|
class LoweringOp(SHOOp):
|
|
"""The Lowering Operator or 'a'.
|
|
|
|
When 'a' acts on a state it lowers the state up by one. Taking
|
|
the adjoint of 'a' returns a^dagger, the Raising Operator. 'a'
|
|
can be rewritten in terms of position and momentum. We can
|
|
represent 'a' as a matrix, which will be its default basis.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : tuple
|
|
The list of numbers or parameters that uniquely specify the
|
|
operator.
|
|
|
|
Examples
|
|
========
|
|
|
|
Create a Lowering Operator and rewrite it in terms of position and
|
|
momentum, and show that taking its adjoint returns a^dagger:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import LoweringOp
|
|
>>> from sympy.physics.quantum import Dagger
|
|
|
|
>>> a = LoweringOp('a')
|
|
>>> a.rewrite('xp').doit()
|
|
sqrt(2)*(m*omega*X + I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
|
|
|
|
>>> Dagger(a)
|
|
RaisingOp(a)
|
|
|
|
Taking the commutator of 'a' with other Operators:
|
|
|
|
>>> from sympy.physics.quantum import Commutator
|
|
>>> from sympy.physics.quantum.sho1d import LoweringOp, RaisingOp
|
|
>>> from sympy.physics.quantum.sho1d import NumberOp
|
|
|
|
>>> a = LoweringOp('a')
|
|
>>> ad = RaisingOp('a')
|
|
>>> N = NumberOp('N')
|
|
>>> Commutator(a, ad).doit()
|
|
1
|
|
>>> Commutator(a, N).doit()
|
|
a
|
|
|
|
Apply 'a' to a state:
|
|
|
|
>>> from sympy.physics.quantum import qapply
|
|
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
|
|
|
|
>>> a = LoweringOp('a')
|
|
>>> k = SHOKet('k')
|
|
>>> qapply(a*k)
|
|
sqrt(k)*|k - 1>
|
|
|
|
Taking 'a' of the lowest state will return 0:
|
|
|
|
>>> from sympy.physics.quantum import qapply
|
|
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
|
|
|
|
>>> a = LoweringOp('a')
|
|
>>> k = SHOKet(0)
|
|
>>> qapply(a*k)
|
|
0
|
|
|
|
Matrix Representation
|
|
|
|
>>> from sympy.physics.quantum.sho1d import LoweringOp
|
|
>>> from sympy.physics.quantum.represent import represent
|
|
>>> a = LoweringOp('a')
|
|
>>> represent(a, basis=N, ndim=4, format='sympy')
|
|
Matrix([
|
|
[0, 1, 0, 0],
|
|
[0, 0, sqrt(2), 0],
|
|
[0, 0, 0, sqrt(3)],
|
|
[0, 0, 0, 0]])
|
|
|
|
"""
|
|
|
|
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
|
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
|
|
I*Px + m*omega*X)
|
|
|
|
def _eval_adjoint(self):
|
|
return RaisingOp(*self.args)
|
|
|
|
def _eval_commutator_RaisingOp(self, other):
|
|
return S.One
|
|
|
|
def _eval_commutator_NumberOp(self, other):
|
|
return self
|
|
|
|
def _apply_operator_SHOKet(self, ket, **options):
|
|
temp = ket.n - Integer(1)
|
|
if ket.n is S.Zero:
|
|
return S.Zero
|
|
else:
|
|
return sqrt(ket.n)*SHOKet(temp)
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_NumberOp(None, **options)
|
|
|
|
def _represent_XOp(self, basis, **options):
|
|
# This logic is good but the underlying position
|
|
# representation logic is broken.
|
|
# temp = self.rewrite('xp').doit()
|
|
# result = represent(temp, basis=X)
|
|
# return result
|
|
raise NotImplementedError('Position representation is not implemented')
|
|
|
|
def _represent_NumberOp(self, basis, **options):
|
|
ndim_info = options.get('ndim', 4)
|
|
format = options.get('format', 'sympy')
|
|
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
|
for i in range(ndim_info - 1):
|
|
value = sqrt(i + 1)
|
|
if format == 'scipy.sparse':
|
|
value = float(value)
|
|
matrix[i,i + 1] = value
|
|
if format == 'scipy.sparse':
|
|
matrix = matrix.tocsr()
|
|
return matrix
|
|
|
|
|
|
class NumberOp(SHOOp):
|
|
"""The Number Operator is simply a^dagger*a
|
|
|
|
It is often useful to write a^dagger*a as simply the Number Operator
|
|
because the Number Operator commutes with the Hamiltonian. And can be
|
|
expressed using the Number Operator. Also the Number Operator can be
|
|
applied to states. We can represent the Number Operator as a matrix,
|
|
which will be its default basis.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : tuple
|
|
The list of numbers or parameters that uniquely specify the
|
|
operator.
|
|
|
|
Examples
|
|
========
|
|
|
|
Create a Number Operator and rewrite it in terms of the ladder
|
|
operators, position and momentum operators, and Hamiltonian:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import NumberOp
|
|
|
|
>>> N = NumberOp('N')
|
|
>>> N.rewrite('a').doit()
|
|
RaisingOp(a)*a
|
|
>>> N.rewrite('xp').doit()
|
|
-1/2 + (m**2*omega**2*X**2 + Px**2)/(2*hbar*m*omega)
|
|
>>> N.rewrite('H').doit()
|
|
-1/2 + H/(hbar*omega)
|
|
|
|
Take the Commutator of the Number Operator with other Operators:
|
|
|
|
>>> from sympy.physics.quantum import Commutator
|
|
>>> from sympy.physics.quantum.sho1d import NumberOp, Hamiltonian
|
|
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
|
|
|
|
>>> N = NumberOp('N')
|
|
>>> H = Hamiltonian('H')
|
|
>>> ad = RaisingOp('a')
|
|
>>> a = LoweringOp('a')
|
|
>>> Commutator(N,H).doit()
|
|
0
|
|
>>> Commutator(N,ad).doit()
|
|
RaisingOp(a)
|
|
>>> Commutator(N,a).doit()
|
|
-a
|
|
|
|
Apply the Number Operator to a state:
|
|
|
|
>>> from sympy.physics.quantum import qapply
|
|
>>> from sympy.physics.quantum.sho1d import NumberOp, SHOKet
|
|
|
|
>>> N = NumberOp('N')
|
|
>>> k = SHOKet('k')
|
|
>>> qapply(N*k)
|
|
k*|k>
|
|
|
|
Matrix Representation
|
|
|
|
>>> from sympy.physics.quantum.sho1d import NumberOp
|
|
>>> from sympy.physics.quantum.represent import represent
|
|
>>> N = NumberOp('N')
|
|
>>> represent(N, basis=N, ndim=4, format='sympy')
|
|
Matrix([
|
|
[0, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 2, 0],
|
|
[0, 0, 0, 3]])
|
|
|
|
"""
|
|
|
|
def _eval_rewrite_as_a(self, *args, **kwargs):
|
|
return ad*a
|
|
|
|
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
|
return (S.One/(Integer(2)*m*hbar*omega))*(Px**2 + (
|
|
m*omega*X)**2) - S.Half
|
|
|
|
def _eval_rewrite_as_H(self, *args, **kwargs):
|
|
return H/(hbar*omega) - S.Half
|
|
|
|
def _apply_operator_SHOKet(self, ket, **options):
|
|
return ket.n*ket
|
|
|
|
def _eval_commutator_Hamiltonian(self, other):
|
|
return S.Zero
|
|
|
|
def _eval_commutator_RaisingOp(self, other):
|
|
return other
|
|
|
|
def _eval_commutator_LoweringOp(self, other):
|
|
return S.NegativeOne*other
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_NumberOp(None, **options)
|
|
|
|
def _represent_XOp(self, basis, **options):
|
|
# This logic is good but the underlying position
|
|
# representation logic is broken.
|
|
# temp = self.rewrite('xp').doit()
|
|
# result = represent(temp, basis=X)
|
|
# return result
|
|
raise NotImplementedError('Position representation is not implemented')
|
|
|
|
def _represent_NumberOp(self, basis, **options):
|
|
ndim_info = options.get('ndim', 4)
|
|
format = options.get('format', 'sympy')
|
|
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
|
for i in range(ndim_info):
|
|
value = i
|
|
if format == 'scipy.sparse':
|
|
value = float(value)
|
|
matrix[i,i] = value
|
|
if format == 'scipy.sparse':
|
|
matrix = matrix.tocsr()
|
|
return matrix
|
|
|
|
|
|
class Hamiltonian(SHOOp):
|
|
"""The Hamiltonian Operator.
|
|
|
|
The Hamiltonian is used to solve the time-independent Schrodinger
|
|
equation. The Hamiltonian can be expressed using the ladder operators,
|
|
as well as by position and momentum. We can represent the Hamiltonian
|
|
Operator as a matrix, which will be its default basis.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : tuple
|
|
The list of numbers or parameters that uniquely specify the
|
|
operator.
|
|
|
|
Examples
|
|
========
|
|
|
|
Create a Hamiltonian Operator and rewrite it in terms of the ladder
|
|
operators, position and momentum, and the Number Operator:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import Hamiltonian
|
|
|
|
>>> H = Hamiltonian('H')
|
|
>>> H.rewrite('a').doit()
|
|
hbar*omega*(1/2 + RaisingOp(a)*a)
|
|
>>> H.rewrite('xp').doit()
|
|
(m**2*omega**2*X**2 + Px**2)/(2*m)
|
|
>>> H.rewrite('N').doit()
|
|
hbar*omega*(1/2 + N)
|
|
|
|
Take the Commutator of the Hamiltonian and the Number Operator:
|
|
|
|
>>> from sympy.physics.quantum import Commutator
|
|
>>> from sympy.physics.quantum.sho1d import Hamiltonian, NumberOp
|
|
|
|
>>> H = Hamiltonian('H')
|
|
>>> N = NumberOp('N')
|
|
>>> Commutator(H,N).doit()
|
|
0
|
|
|
|
Apply the Hamiltonian Operator to a state:
|
|
|
|
>>> from sympy.physics.quantum import qapply
|
|
>>> from sympy.physics.quantum.sho1d import Hamiltonian, SHOKet
|
|
|
|
>>> H = Hamiltonian('H')
|
|
>>> k = SHOKet('k')
|
|
>>> qapply(H*k)
|
|
hbar*k*omega*|k> + hbar*omega*|k>/2
|
|
|
|
Matrix Representation
|
|
|
|
>>> from sympy.physics.quantum.sho1d import Hamiltonian
|
|
>>> from sympy.physics.quantum.represent import represent
|
|
|
|
>>> H = Hamiltonian('H')
|
|
>>> represent(H, basis=N, ndim=4, format='sympy')
|
|
Matrix([
|
|
[hbar*omega/2, 0, 0, 0],
|
|
[ 0, 3*hbar*omega/2, 0, 0],
|
|
[ 0, 0, 5*hbar*omega/2, 0],
|
|
[ 0, 0, 0, 7*hbar*omega/2]])
|
|
|
|
"""
|
|
|
|
def _eval_rewrite_as_a(self, *args, **kwargs):
|
|
return hbar*omega*(ad*a + S.Half)
|
|
|
|
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
|
return (S.One/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
|
|
|
|
def _eval_rewrite_as_N(self, *args, **kwargs):
|
|
return hbar*omega*(N + S.Half)
|
|
|
|
def _apply_operator_SHOKet(self, ket, **options):
|
|
return (hbar*omega*(ket.n + S.Half))*ket
|
|
|
|
def _eval_commutator_NumberOp(self, other):
|
|
return S.Zero
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_NumberOp(None, **options)
|
|
|
|
def _represent_XOp(self, basis, **options):
|
|
# This logic is good but the underlying position
|
|
# representation logic is broken.
|
|
# temp = self.rewrite('xp').doit()
|
|
# result = represent(temp, basis=X)
|
|
# return result
|
|
raise NotImplementedError('Position representation is not implemented')
|
|
|
|
def _represent_NumberOp(self, basis, **options):
|
|
ndim_info = options.get('ndim', 4)
|
|
format = options.get('format', 'sympy')
|
|
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
|
for i in range(ndim_info):
|
|
value = i + S.Half
|
|
if format == 'scipy.sparse':
|
|
value = float(value)
|
|
matrix[i,i] = value
|
|
if format == 'scipy.sparse':
|
|
matrix = matrix.tocsr()
|
|
return hbar*omega*matrix
|
|
|
|
#------------------------------------------------------------------------------
|
|
|
|
class SHOState(State):
|
|
"""State class for SHO states"""
|
|
|
|
@classmethod
|
|
def _eval_hilbert_space(cls, label):
|
|
return ComplexSpace(S.Infinity)
|
|
|
|
@property
|
|
def n(self):
|
|
return self.args[0]
|
|
|
|
|
|
class SHOKet(SHOState, Ket):
|
|
"""1D eigenket.
|
|
|
|
Inherits from SHOState and Ket.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : tuple
|
|
The list of numbers or parameters that uniquely specify the ket
|
|
This is usually its quantum numbers or its symbol.
|
|
|
|
Examples
|
|
========
|
|
|
|
Ket's know about their associated bra:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import SHOKet
|
|
|
|
>>> k = SHOKet('k')
|
|
>>> k.dual
|
|
<k|
|
|
>>> k.dual_class()
|
|
<class 'sympy.physics.quantum.sho1d.SHOBra'>
|
|
|
|
Take the Inner Product with a bra:
|
|
|
|
>>> from sympy.physics.quantum import InnerProduct
|
|
>>> from sympy.physics.quantum.sho1d import SHOKet, SHOBra
|
|
|
|
>>> k = SHOKet('k')
|
|
>>> b = SHOBra('b')
|
|
>>> InnerProduct(b,k).doit()
|
|
KroneckerDelta(b, k)
|
|
|
|
Vector representation of a numerical state ket:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import SHOKet, NumberOp
|
|
>>> from sympy.physics.quantum.represent import represent
|
|
|
|
>>> k = SHOKet(3)
|
|
>>> N = NumberOp('N')
|
|
>>> represent(k, basis=N, ndim=4)
|
|
Matrix([
|
|
[0],
|
|
[0],
|
|
[0],
|
|
[1]])
|
|
|
|
"""
|
|
|
|
@classmethod
|
|
def dual_class(self):
|
|
return SHOBra
|
|
|
|
def _eval_innerproduct_SHOBra(self, bra, **hints):
|
|
result = KroneckerDelta(self.n, bra.n)
|
|
return result
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_NumberOp(None, **options)
|
|
|
|
def _represent_NumberOp(self, basis, **options):
|
|
ndim_info = options.get('ndim', 4)
|
|
format = options.get('format', 'sympy')
|
|
options['spmatrix'] = 'lil'
|
|
vector = matrix_zeros(ndim_info, 1, **options)
|
|
if isinstance(self.n, Integer):
|
|
if self.n >= ndim_info:
|
|
return ValueError("N-Dimension too small")
|
|
if format == 'scipy.sparse':
|
|
vector[int(self.n), 0] = 1.0
|
|
vector = vector.tocsr()
|
|
elif format == 'numpy':
|
|
vector[int(self.n), 0] = 1.0
|
|
else:
|
|
vector[self.n, 0] = S.One
|
|
return vector
|
|
else:
|
|
return ValueError("Not Numerical State")
|
|
|
|
|
|
class SHOBra(SHOState, Bra):
|
|
"""A time-independent Bra in SHO.
|
|
|
|
Inherits from SHOState and Bra.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : tuple
|
|
The list of numbers or parameters that uniquely specify the ket
|
|
This is usually its quantum numbers or its symbol.
|
|
|
|
Examples
|
|
========
|
|
|
|
Bra's know about their associated ket:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import SHOBra
|
|
|
|
>>> b = SHOBra('b')
|
|
>>> b.dual
|
|
|b>
|
|
>>> b.dual_class()
|
|
<class 'sympy.physics.quantum.sho1d.SHOKet'>
|
|
|
|
Vector representation of a numerical state bra:
|
|
|
|
>>> from sympy.physics.quantum.sho1d import SHOBra, NumberOp
|
|
>>> from sympy.physics.quantum.represent import represent
|
|
|
|
>>> b = SHOBra(3)
|
|
>>> N = NumberOp('N')
|
|
>>> represent(b, basis=N, ndim=4)
|
|
Matrix([[0, 0, 0, 1]])
|
|
|
|
"""
|
|
|
|
@classmethod
|
|
def dual_class(self):
|
|
return SHOKet
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_NumberOp(None, **options)
|
|
|
|
def _represent_NumberOp(self, basis, **options):
|
|
ndim_info = options.get('ndim', 4)
|
|
format = options.get('format', 'sympy')
|
|
options['spmatrix'] = 'lil'
|
|
vector = matrix_zeros(1, ndim_info, **options)
|
|
if isinstance(self.n, Integer):
|
|
if self.n >= ndim_info:
|
|
return ValueError("N-Dimension too small")
|
|
if format == 'scipy.sparse':
|
|
vector[0, int(self.n)] = 1.0
|
|
vector = vector.tocsr()
|
|
elif format == 'numpy':
|
|
vector[0, int(self.n)] = 1.0
|
|
else:
|
|
vector[0, self.n] = S.One
|
|
return vector
|
|
else:
|
|
return ValueError("Not Numerical State")
|
|
|
|
|
|
ad = RaisingOp('a')
|
|
a = LoweringOp('a')
|
|
H = Hamiltonian('H')
|
|
N = NumberOp('N')
|
|
omega = Symbol('omega')
|
|
m = Symbol('m')
|