348 lines
10 KiB
Python
348 lines
10 KiB
Python
from sympy.concrete.summations import Sum
|
|
from sympy.core.mod import Mod
|
|
from sympy.core.relational import (Equality, Unequality)
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.matrices.expressions.blockmatrix import BlockMatrix
|
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
|
from sympy.matrices.expressions.special import Identity
|
|
from sympy.utilities.lambdify import lambdify
|
|
|
|
from sympy.abc import x, i, j, a, b, c, d
|
|
from sympy.core import Pow
|
|
from sympy.codegen.matrix_nodes import MatrixSolve
|
|
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
|
|
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt
|
|
from sympy.tensor.array import Array
|
|
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \
|
|
PermuteDims, ArrayDiagonal
|
|
from sympy.printing.numpy import JaxPrinter, _jax_known_constants, _jax_known_functions
|
|
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
|
|
|
from sympy.testing.pytest import skip, raises
|
|
from sympy.external import import_module
|
|
|
|
# Unlike NumPy which will aggressively promote operands to double precision,
|
|
# jax always uses single precision. Double precision in jax can be
|
|
# configured before the call to `import jax`, however this must be explicitly
|
|
# configured and is not fully supported. Thus, the tests here have been modified
|
|
# from the tests in test_numpy.py, only in the fact that they assert lambdify
|
|
# function accuracy to only single precision accuracy.
|
|
# https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
|
|
|
|
jax = import_module('jax')
|
|
|
|
if jax:
|
|
deafult_float_info = jax.numpy.finfo(jax.numpy.array([]).dtype)
|
|
JAX_DEFAULT_EPSILON = deafult_float_info.eps
|
|
|
|
def test_jax_piecewise_regression():
|
|
"""
|
|
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
|
|
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
|
|
See gh-9747 and gh-9749 for details.
|
|
"""
|
|
printer = JaxPrinter()
|
|
p = Piecewise((1, x < 0), (0, True))
|
|
assert printer.doprint(p) == \
|
|
'jax.numpy.select([jax.numpy.less(x, 0),True], [1,0], default=jax.numpy.nan)'
|
|
assert printer.module_imports == {'jax.numpy': {'select', 'less', 'nan'}}
|
|
|
|
|
|
def test_jax_logaddexp():
|
|
lae = logaddexp(a, b)
|
|
assert JaxPrinter().doprint(lae) == 'jax.numpy.logaddexp(a, b)'
|
|
lae2 = logaddexp2(a, b)
|
|
assert JaxPrinter().doprint(lae2) == 'jax.numpy.logaddexp2(a, b)'
|
|
|
|
|
|
def test_jax_sum():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
s = Sum(x ** i, (i, a, b))
|
|
f = lambdify((a, b, x), s, 'jax')
|
|
|
|
a_, b_ = 0, 10
|
|
x_ = jax.numpy.linspace(-1, +1, 10)
|
|
assert jax.numpy.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
|
|
|
|
s = Sum(i * x, (i, a, b))
|
|
f = lambdify((a, b, x), s, 'jax')
|
|
|
|
a_, b_ = 0, 10
|
|
x_ = jax.numpy.linspace(-1, +1, 10)
|
|
assert jax.numpy.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
|
|
|
|
|
|
def test_jax_multiple_sums():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
s = Sum((x + j) * i, (i, a, b), (j, c, d))
|
|
f = lambdify((a, b, c, d, x), s, 'jax')
|
|
|
|
a_, b_ = 0, 10
|
|
c_, d_ = 11, 21
|
|
x_ = jax.numpy.linspace(-1, +1, 10)
|
|
assert jax.numpy.allclose(f(a_, b_, c_, d_, x_),
|
|
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
|
|
|
|
|
|
def test_jax_codegen_einsum():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
M = MatrixSymbol("M", 2, 2)
|
|
N = MatrixSymbol("N", 2, 2)
|
|
|
|
cg = convert_matrix_to_array(M * N)
|
|
f = lambdify((M, N), cg, 'jax')
|
|
|
|
ma = jax.numpy.array([[1, 2], [3, 4]])
|
|
mb = jax.numpy.array([[1,-2], [-1, 3]])
|
|
assert (f(ma, mb) == jax.numpy.matmul(ma, mb)).all()
|
|
|
|
|
|
def test_jax_codegen_extra():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
M = MatrixSymbol("M", 2, 2)
|
|
N = MatrixSymbol("N", 2, 2)
|
|
P = MatrixSymbol("P", 2, 2)
|
|
Q = MatrixSymbol("Q", 2, 2)
|
|
ma = jax.numpy.array([[1, 2], [3, 4]])
|
|
mb = jax.numpy.array([[1,-2], [-1, 3]])
|
|
mc = jax.numpy.array([[2, 0], [1, 2]])
|
|
md = jax.numpy.array([[1,-1], [4, 7]])
|
|
|
|
cg = ArrayTensorProduct(M, N)
|
|
f = lambdify((M, N), cg, 'jax')
|
|
assert (f(ma, mb) == jax.numpy.einsum(ma, [0, 1], mb, [2, 3])).all()
|
|
|
|
cg = ArrayAdd(M, N)
|
|
f = lambdify((M, N), cg, 'jax')
|
|
assert (f(ma, mb) == ma+mb).all()
|
|
|
|
cg = ArrayAdd(M, N, P)
|
|
f = lambdify((M, N, P), cg, 'jax')
|
|
assert (f(ma, mb, mc) == ma+mb+mc).all()
|
|
|
|
cg = ArrayAdd(M, N, P, Q)
|
|
f = lambdify((M, N, P, Q), cg, 'jax')
|
|
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
|
|
|
|
cg = PermuteDims(M, [1, 0])
|
|
f = lambdify((M,), cg, 'jax')
|
|
assert (f(ma) == ma.T).all()
|
|
|
|
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0])
|
|
f = lambdify((M, N), cg, 'jax')
|
|
assert (f(ma, mb) == jax.numpy.transpose(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
|
|
|
|
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2))
|
|
f = lambdify((M, N), cg, 'jax')
|
|
assert (f(ma, mb) == jax.numpy.diagonal(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
|
|
|
|
|
|
def test_jax_relational():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
e = Equality(x, 1)
|
|
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [False, True, False])
|
|
|
|
e = Unequality(x, 1)
|
|
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [True, False, True])
|
|
|
|
e = (x < 1)
|
|
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [True, False, False])
|
|
|
|
e = (x <= 1)
|
|
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [True, True, False])
|
|
|
|
e = (x > 1)
|
|
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [False, False, True])
|
|
|
|
e = (x >= 1)
|
|
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [False, True, True])
|
|
|
|
# Multi-condition expressions
|
|
e = (x >= 1) & (x < 2)
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [False, True, False])
|
|
|
|
e = (x >= 1) | (x < 2)
|
|
f = lambdify((x,), e, 'jax')
|
|
x_ = jax.numpy.array([0, 1, 2])
|
|
assert jax.numpy.array_equal(f(x_), [True, True, True])
|
|
|
|
def test_jax_mod():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
e = Mod(a, b)
|
|
f = lambdify((a, b), e, 'jax')
|
|
|
|
a_ = jax.numpy.array([0, 1, 2, 3])
|
|
b_ = 2
|
|
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
|
|
|
|
a_ = jax.numpy.array([0, 1, 2, 3])
|
|
b_ = jax.numpy.array([2, 2, 2, 2])
|
|
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
|
|
|
|
a_ = jax.numpy.array([2, 3, 4, 5])
|
|
b_ = jax.numpy.array([2, 3, 4, 5])
|
|
assert jax.numpy.array_equal(f(a_, b_), [0, 0, 0, 0])
|
|
|
|
|
|
def test_jax_pow():
|
|
if not jax:
|
|
skip('JAX not installed')
|
|
|
|
expr = Pow(2, -1, evaluate=False)
|
|
f = lambdify([], expr, 'jax')
|
|
assert f() == 0.5
|
|
|
|
|
|
def test_jax_expm1():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
f = lambdify((a,), expm1(a), 'jax')
|
|
assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * JAX_DEFAULT_EPSILON
|
|
|
|
|
|
def test_jax_log1p():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
f = lambdify((a,), log1p(a), 'jax')
|
|
assert abs(f(1e-99) - 1e-99) <= 1e-99 * JAX_DEFAULT_EPSILON
|
|
|
|
def test_jax_hypot():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
assert abs(lambdify((a, b), hypot(a, b), 'jax')(3, 4) - 5) <= JAX_DEFAULT_EPSILON
|
|
|
|
def test_jax_log10():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
assert abs(lambdify((a,), log10(a), 'jax')(100) - 2) <= JAX_DEFAULT_EPSILON
|
|
|
|
|
|
def test_jax_exp2():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
assert abs(lambdify((a,), exp2(a), 'jax')(5) - 32) <= JAX_DEFAULT_EPSILON
|
|
|
|
|
|
def test_jax_log2():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
assert abs(lambdify((a,), log2(a), 'jax')(256) - 8) <= JAX_DEFAULT_EPSILON
|
|
|
|
|
|
def test_jax_Sqrt():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
assert abs(lambdify((a,), Sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
|
|
|
|
|
|
def test_jax_sqrt():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
assert abs(lambdify((a,), sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
|
|
|
|
|
|
def test_jax_matsolve():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
M = MatrixSymbol("M", 3, 3)
|
|
x = MatrixSymbol("x", 3, 1)
|
|
|
|
expr = M**(-1) * x + x
|
|
matsolve_expr = MatrixSolve(M, x) + x
|
|
|
|
f = lambdify((M, x), expr, 'jax')
|
|
f_matsolve = lambdify((M, x), matsolve_expr, 'jax')
|
|
|
|
m0 = jax.numpy.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
|
|
assert jax.numpy.linalg.matrix_rank(m0) == 3
|
|
|
|
x0 = jax.numpy.array([3, 4, 5])
|
|
|
|
assert jax.numpy.allclose(f_matsolve(m0, x0), f(m0, x0))
|
|
|
|
|
|
def test_16857():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
a_1 = MatrixSymbol('a_1', 10, 3)
|
|
a_2 = MatrixSymbol('a_2', 10, 3)
|
|
a_3 = MatrixSymbol('a_3', 10, 3)
|
|
a_4 = MatrixSymbol('a_4', 10, 3)
|
|
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
|
|
assert A.shape == (20, 6)
|
|
|
|
printer = JaxPrinter()
|
|
assert printer.doprint(A) == 'jax.numpy.block([[a_1, a_2], [a_3, a_4]])'
|
|
|
|
|
|
def test_issue_17006():
|
|
if not jax:
|
|
skip("JAX not installed")
|
|
|
|
M = MatrixSymbol("M", 2, 2)
|
|
|
|
f = lambdify(M, M + Identity(2), 'jax')
|
|
ma = jax.numpy.array([[1, 2], [3, 4]])
|
|
mr = jax.numpy.array([[2, 2], [3, 5]])
|
|
|
|
assert (f(ma) == mr).all()
|
|
|
|
from sympy.core.symbol import symbols
|
|
n = symbols('n', integer=True)
|
|
N = MatrixSymbol("M", n, n)
|
|
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n), 'jax'))
|
|
|
|
def test_jax_array():
|
|
assert JaxPrinter().doprint(Array(((1, 2), (3, 5)))) == 'jax.numpy.array([[1, 2], [3, 5]])'
|
|
assert JaxPrinter().doprint(Array((1, 2))) == 'jax.numpy.array((1, 2))'
|
|
|
|
def test_jax_known_funcs_consts():
|
|
assert _jax_known_constants['NaN'] == 'jax.numpy.nan'
|
|
assert _jax_known_constants['EulerGamma'] == 'jax.numpy.euler_gamma'
|
|
|
|
assert _jax_known_functions['acos'] == 'jax.numpy.arccos'
|
|
assert _jax_known_functions['log'] == 'jax.numpy.log'
|
|
|
|
def test_jax_print_methods():
|
|
prntr = JaxPrinter()
|
|
assert hasattr(prntr, '_print_acos')
|
|
assert hasattr(prntr, '_print_log')
|