477 lines
14 KiB
Python
477 lines
14 KiB
Python
from sympy.core import (S, pi, oo, Symbol, symbols, Rational, Integer,
|
|
GoldenRatio, EulerGamma, Catalan, Lambda, Dummy)
|
|
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
|
|
gamma, sign, Max, Min, factorial, beta)
|
|
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
|
|
from sympy.sets import Range
|
|
from sympy.logic import ITE
|
|
from sympy.codegen import For, aug_assign, Assignment
|
|
from sympy.testing.pytest import raises
|
|
from sympy.printing.rcode import RCodePrinter
|
|
from sympy.utilities.lambdify import implemented_function
|
|
from sympy.tensor import IndexedBase, Idx
|
|
from sympy.matrices import Matrix, MatrixSymbol
|
|
|
|
from sympy.printing.rcode import rcode
|
|
|
|
x, y, z = symbols('x,y,z')
|
|
|
|
|
|
def test_printmethod():
|
|
class fabs(Abs):
|
|
def _rcode(self, printer):
|
|
return "abs(%s)" % printer._print(self.args[0])
|
|
|
|
assert rcode(fabs(x)) == "abs(x)"
|
|
|
|
|
|
def test_rcode_sqrt():
|
|
assert rcode(sqrt(x)) == "sqrt(x)"
|
|
assert rcode(x**0.5) == "sqrt(x)"
|
|
assert rcode(sqrt(x)) == "sqrt(x)"
|
|
|
|
|
|
def test_rcode_Pow():
|
|
assert rcode(x**3) == "x^3"
|
|
assert rcode(x**(y**3)) == "x^(y^3)"
|
|
g = implemented_function('g', Lambda(x, 2*x))
|
|
assert rcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
|
"(3.5*2*x)^(-x + y^x)/(x^2 + y)"
|
|
assert rcode(x**-1.0) == '1.0/x'
|
|
assert rcode(x**Rational(2, 3)) == 'x^(2.0/3.0)'
|
|
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"),
|
|
(lambda base, exp: not exp.is_integer, "pow")]
|
|
assert rcode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)'
|
|
assert rcode(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 3.2)'
|
|
|
|
|
|
def test_rcode_Max():
|
|
# Test for gh-11926
|
|
assert rcode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))'
|
|
|
|
|
|
def test_rcode_constants_mathh():
|
|
assert rcode(exp(1)) == "exp(1)"
|
|
assert rcode(pi) == "pi"
|
|
assert rcode(oo) == "Inf"
|
|
assert rcode(-oo) == "-Inf"
|
|
|
|
|
|
def test_rcode_constants_other():
|
|
assert rcode(2*GoldenRatio) == "GoldenRatio = 1.61803398874989;\n2*GoldenRatio"
|
|
assert rcode(
|
|
2*Catalan) == "Catalan = 0.915965594177219;\n2*Catalan"
|
|
assert rcode(2*EulerGamma) == "EulerGamma = 0.577215664901533;\n2*EulerGamma"
|
|
|
|
|
|
def test_rcode_Rational():
|
|
assert rcode(Rational(3, 7)) == "3.0/7.0"
|
|
assert rcode(Rational(18, 9)) == "2"
|
|
assert rcode(Rational(3, -7)) == "-3.0/7.0"
|
|
assert rcode(Rational(-3, -7)) == "3.0/7.0"
|
|
assert rcode(x + Rational(3, 7)) == "x + 3.0/7.0"
|
|
assert rcode(Rational(3, 7)*x) == "(3.0/7.0)*x"
|
|
|
|
|
|
def test_rcode_Integer():
|
|
assert rcode(Integer(67)) == "67"
|
|
assert rcode(Integer(-1)) == "-1"
|
|
|
|
|
|
def test_rcode_functions():
|
|
assert rcode(sin(x) ** cos(x)) == "sin(x)^cos(x)"
|
|
assert rcode(factorial(x) + gamma(y)) == "factorial(x) + gamma(y)"
|
|
assert rcode(beta(Min(x, y), Max(x, y))) == "beta(min(x, y), max(x, y))"
|
|
|
|
|
|
def test_rcode_inline_function():
|
|
x = symbols('x')
|
|
g = implemented_function('g', Lambda(x, 2*x))
|
|
assert rcode(g(x)) == "2*x"
|
|
g = implemented_function('g', Lambda(x, 2*x/Catalan))
|
|
assert rcode(
|
|
g(x)) == "Catalan = %s;\n2*x/Catalan" % Catalan.n()
|
|
A = IndexedBase('A')
|
|
i = Idx('i', symbols('n', integer=True))
|
|
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
|
res=rcode(g(A[i]), assign_to=A[i])
|
|
ref=(
|
|
"for (i in 1:n){\n"
|
|
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
|
|
"}"
|
|
)
|
|
assert res == ref
|
|
|
|
|
|
def test_rcode_exceptions():
|
|
assert rcode(ceiling(x)) == "ceiling(x)"
|
|
assert rcode(Abs(x)) == "abs(x)"
|
|
assert rcode(gamma(x)) == "gamma(x)"
|
|
|
|
|
|
def test_rcode_user_functions():
|
|
x = symbols('x', integer=False)
|
|
n = symbols('n', integer=True)
|
|
custom_functions = {
|
|
"ceiling": "myceil",
|
|
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
|
|
}
|
|
assert rcode(ceiling(x), user_functions=custom_functions) == "myceil(x)"
|
|
assert rcode(Abs(x), user_functions=custom_functions) == "fabs(x)"
|
|
assert rcode(Abs(n), user_functions=custom_functions) == "abs(n)"
|
|
|
|
|
|
def test_rcode_boolean():
|
|
assert rcode(True) == "True"
|
|
assert rcode(S.true) == "True"
|
|
assert rcode(False) == "False"
|
|
assert rcode(S.false) == "False"
|
|
assert rcode(x & y) == "x & y"
|
|
assert rcode(x | y) == "x | y"
|
|
assert rcode(~x) == "!x"
|
|
assert rcode(x & y & z) == "x & y & z"
|
|
assert rcode(x | y | z) == "x | y | z"
|
|
assert rcode((x & y) | z) == "z | x & y"
|
|
assert rcode((x | y) & z) == "z & (x | y)"
|
|
|
|
def test_rcode_Relational():
|
|
assert rcode(Eq(x, y)) == "x == y"
|
|
assert rcode(Ne(x, y)) == "x != y"
|
|
assert rcode(Le(x, y)) == "x <= y"
|
|
assert rcode(Lt(x, y)) == "x < y"
|
|
assert rcode(Gt(x, y)) == "x > y"
|
|
assert rcode(Ge(x, y)) == "x >= y"
|
|
|
|
|
|
def test_rcode_Piecewise():
|
|
expr = Piecewise((x, x < 1), (x**2, True))
|
|
res=rcode(expr)
|
|
ref="ifelse(x < 1,x,x^2)"
|
|
assert res == ref
|
|
tau=Symbol("tau")
|
|
res=rcode(expr,tau)
|
|
ref="tau = ifelse(x < 1,x,x^2);"
|
|
assert res == ref
|
|
|
|
expr = 2*Piecewise((x, x < 1), (x**2, x<2), (x**3,True))
|
|
assert rcode(expr) == "2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3))"
|
|
res = rcode(expr, assign_to='c')
|
|
assert res == "c = 2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3));"
|
|
|
|
# Check that Piecewise without a True (default) condition error
|
|
#expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
|
#raises(ValueError, lambda: rcode(expr))
|
|
expr = 2*Piecewise((x, x < 1), (x**2, x<2))
|
|
assert(rcode(expr))== "2*ifelse(x < 1,x,ifelse(x < 2,x^2,NA))"
|
|
|
|
|
|
def test_rcode_sinc():
|
|
from sympy.functions.elementary.trigonometric import sinc
|
|
expr = sinc(x)
|
|
res = rcode(expr)
|
|
ref = "ifelse(x != 0,sin(x)/x,1)"
|
|
assert res == ref
|
|
|
|
|
|
def test_rcode_Piecewise_deep():
|
|
p = rcode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
|
|
assert p == "2*ifelse(x < 1,x,ifelse(x < 2,x + 1,x^2))"
|
|
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
|
|
p = rcode(expr)
|
|
ref="x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1"
|
|
assert p == ref
|
|
|
|
ref="c = x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1;"
|
|
p = rcode(expr, assign_to='c')
|
|
assert p == ref
|
|
|
|
|
|
def test_rcode_ITE():
|
|
expr = ITE(x < 1, y, z)
|
|
p = rcode(expr)
|
|
ref="ifelse(x < 1,y,z)"
|
|
assert p == ref
|
|
|
|
|
|
def test_rcode_settings():
|
|
raises(TypeError, lambda: rcode(sin(x), method="garbage"))
|
|
|
|
|
|
def test_rcode_Indexed():
|
|
n, m, o = symbols('n m o', integer=True)
|
|
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
|
|
p = RCodePrinter()
|
|
p._not_r = set()
|
|
|
|
x = IndexedBase('x')[j]
|
|
assert p._print_Indexed(x) == 'x[j]'
|
|
A = IndexedBase('A')[i, j]
|
|
assert p._print_Indexed(A) == 'A[i, j]'
|
|
B = IndexedBase('B')[i, j, k]
|
|
assert p._print_Indexed(B) == 'B[i, j, k]'
|
|
|
|
assert p._not_r == set()
|
|
|
|
def test_rcode_Indexed_without_looking_for_contraction():
|
|
len_y = 5
|
|
y = IndexedBase('y', shape=(len_y,))
|
|
x = IndexedBase('x', shape=(len_y,))
|
|
Dy = IndexedBase('Dy', shape=(len_y-1,))
|
|
i = Idx('i', len_y-1)
|
|
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
|
code0 = rcode(e.rhs, assign_to=e.lhs, contract=False)
|
|
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1)
|
|
|
|
|
|
def test_rcode_loops_matrix_vector():
|
|
n, m = symbols('n m', integer=True)
|
|
A = IndexedBase('A')
|
|
x = IndexedBase('x')
|
|
y = IndexedBase('y')
|
|
i = Idx('i', m)
|
|
j = Idx('j', n)
|
|
|
|
s = (
|
|
'for (i in 1:m){\n'
|
|
' y[i] = 0;\n'
|
|
'}\n'
|
|
'for (i in 1:m){\n'
|
|
' for (j in 1:n){\n'
|
|
' y[i] = A[i, j]*x[j] + y[i];\n'
|
|
' }\n'
|
|
'}'
|
|
)
|
|
c = rcode(A[i, j]*x[j], assign_to=y[i])
|
|
assert c == s
|
|
|
|
|
|
def test_dummy_loops():
|
|
# the following line could also be
|
|
# [Dummy(s, integer=True) for s in 'im']
|
|
# or [Dummy(integer=True) for s in 'im']
|
|
i, m = symbols('i m', integer=True, cls=Dummy)
|
|
x = IndexedBase('x')
|
|
y = IndexedBase('y')
|
|
i = Idx(i, m)
|
|
|
|
expected = (
|
|
'for (i_%(icount)i in 1:m_%(mcount)i){\n'
|
|
' y[i_%(icount)i] = x[i_%(icount)i];\n'
|
|
'}'
|
|
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
|
code = rcode(x[i], assign_to=y[i])
|
|
assert code == expected
|
|
|
|
|
|
def test_rcode_loops_add():
|
|
n, m = symbols('n m', integer=True)
|
|
A = IndexedBase('A')
|
|
x = IndexedBase('x')
|
|
y = IndexedBase('y')
|
|
z = IndexedBase('z')
|
|
i = Idx('i', m)
|
|
j = Idx('j', n)
|
|
|
|
s = (
|
|
'for (i in 1:m){\n'
|
|
' y[i] = x[i] + z[i];\n'
|
|
'}\n'
|
|
'for (i in 1:m){\n'
|
|
' for (j in 1:n){\n'
|
|
' y[i] = A[i, j]*x[j] + y[i];\n'
|
|
' }\n'
|
|
'}'
|
|
)
|
|
c = rcode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
|
|
assert c == s
|
|
|
|
|
|
def test_rcode_loops_multiple_contractions():
|
|
n, m, o, p = symbols('n m o p', integer=True)
|
|
a = IndexedBase('a')
|
|
b = IndexedBase('b')
|
|
y = IndexedBase('y')
|
|
i = Idx('i', m)
|
|
j = Idx('j', n)
|
|
k = Idx('k', o)
|
|
l = Idx('l', p)
|
|
|
|
s = (
|
|
'for (i in 1:m){\n'
|
|
' y[i] = 0;\n'
|
|
'}\n'
|
|
'for (i in 1:m){\n'
|
|
' for (j in 1:n){\n'
|
|
' for (k in 1:o){\n'
|
|
' for (l in 1:p){\n'
|
|
' y[i] = a[i, j, k, l]*b[j, k, l] + y[i];\n'
|
|
' }\n'
|
|
' }\n'
|
|
' }\n'
|
|
'}'
|
|
)
|
|
c = rcode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
|
|
assert c == s
|
|
|
|
|
|
def test_rcode_loops_addfactor():
|
|
n, m, o, p = symbols('n m o p', integer=True)
|
|
a = IndexedBase('a')
|
|
b = IndexedBase('b')
|
|
c = IndexedBase('c')
|
|
y = IndexedBase('y')
|
|
i = Idx('i', m)
|
|
j = Idx('j', n)
|
|
k = Idx('k', o)
|
|
l = Idx('l', p)
|
|
|
|
s = (
|
|
'for (i in 1:m){\n'
|
|
' y[i] = 0;\n'
|
|
'}\n'
|
|
'for (i in 1:m){\n'
|
|
' for (j in 1:n){\n'
|
|
' for (k in 1:o){\n'
|
|
' for (l in 1:p){\n'
|
|
' y[i] = (a[i, j, k, l] + b[i, j, k, l])*c[j, k, l] + y[i];\n'
|
|
' }\n'
|
|
' }\n'
|
|
' }\n'
|
|
'}'
|
|
)
|
|
c = rcode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
|
|
assert c == s
|
|
|
|
|
|
def test_rcode_loops_multiple_terms():
|
|
n, m, o, p = symbols('n m o p', integer=True)
|
|
a = IndexedBase('a')
|
|
b = IndexedBase('b')
|
|
c = IndexedBase('c')
|
|
y = IndexedBase('y')
|
|
i = Idx('i', m)
|
|
j = Idx('j', n)
|
|
k = Idx('k', o)
|
|
|
|
s0 = (
|
|
'for (i in 1:m){\n'
|
|
' y[i] = 0;\n'
|
|
'}\n'
|
|
)
|
|
s1 = (
|
|
'for (i in 1:m){\n'
|
|
' for (j in 1:n){\n'
|
|
' for (k in 1:o){\n'
|
|
' y[i] = b[j]*b[k]*c[i, j, k] + y[i];\n'
|
|
' }\n'
|
|
' }\n'
|
|
'}\n'
|
|
)
|
|
s2 = (
|
|
'for (i in 1:m){\n'
|
|
' for (k in 1:o){\n'
|
|
' y[i] = a[i, k]*b[k] + y[i];\n'
|
|
' }\n'
|
|
'}\n'
|
|
)
|
|
s3 = (
|
|
'for (i in 1:m){\n'
|
|
' for (j in 1:n){\n'
|
|
' y[i] = a[i, j]*b[j] + y[i];\n'
|
|
' }\n'
|
|
'}\n'
|
|
)
|
|
c = rcode(
|
|
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
|
|
|
|
ref={}
|
|
ref[0] = s0 + s1 + s2 + s3[:-1]
|
|
ref[1] = s0 + s1 + s3 + s2[:-1]
|
|
ref[2] = s0 + s2 + s1 + s3[:-1]
|
|
ref[3] = s0 + s2 + s3 + s1[:-1]
|
|
ref[4] = s0 + s3 + s1 + s2[:-1]
|
|
ref[5] = s0 + s3 + s2 + s1[:-1]
|
|
|
|
assert (c == ref[0] or
|
|
c == ref[1] or
|
|
c == ref[2] or
|
|
c == ref[3] or
|
|
c == ref[4] or
|
|
c == ref[5])
|
|
|
|
|
|
def test_dereference_printing():
|
|
expr = x + y + sin(z) + z
|
|
assert rcode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))"
|
|
|
|
|
|
def test_Matrix_printing():
|
|
# Test returning a Matrix
|
|
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
|
A = MatrixSymbol('A', 3, 1)
|
|
p = rcode(mat, A)
|
|
assert p == (
|
|
"A[0] = x*y;\n"
|
|
"A[1] = ifelse(y > 0,x + 2,y);\n"
|
|
"A[2] = sin(z);")
|
|
# Test using MatrixElements in expressions
|
|
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
|
p = rcode(expr)
|
|
assert p == ("ifelse(x > 0,2*A[2],A[2]) + sin(A[1]) + A[0]")
|
|
# Test using MatrixElements in a Matrix
|
|
q = MatrixSymbol('q', 5, 1)
|
|
M = MatrixSymbol('M', 3, 3)
|
|
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
|
[q[1,0] + q[2,0], q[3, 0], 5],
|
|
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
|
assert rcode(m, M) == (
|
|
"M[0] = sin(q[1]);\n"
|
|
"M[1] = 0;\n"
|
|
"M[2] = cos(q[2]);\n"
|
|
"M[3] = q[1] + q[2];\n"
|
|
"M[4] = q[3];\n"
|
|
"M[5] = 5;\n"
|
|
"M[6] = 2*q[4]/q[1];\n"
|
|
"M[7] = sqrt(q[0]) + 4;\n"
|
|
"M[8] = 0;")
|
|
|
|
|
|
def test_rcode_sgn():
|
|
|
|
expr = sign(x) * y
|
|
assert rcode(expr) == 'y*sign(x)'
|
|
p = rcode(expr, 'z')
|
|
assert p == 'z = y*sign(x);'
|
|
|
|
p = rcode(sign(2 * x + x**2) * x + x**2)
|
|
assert p == "x^2 + x*sign(x^2 + 2*x)"
|
|
|
|
expr = sign(cos(x))
|
|
p = rcode(expr)
|
|
assert p == 'sign(cos(x))'
|
|
|
|
def test_rcode_Assignment():
|
|
assert rcode(Assignment(x, y + z)) == 'x = y + z;'
|
|
assert rcode(aug_assign(x, '+', y + z)) == 'x += y + z;'
|
|
|
|
|
|
def test_rcode_For():
|
|
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)])
|
|
sol = rcode(f)
|
|
assert sol == ("for(x in seq(from=0, to=9, by=2){\n"
|
|
" y *= x;\n"
|
|
"}")
|
|
|
|
|
|
def test_MatrixElement_printing():
|
|
# test cases for issue #11821
|
|
A = MatrixSymbol("A", 1, 3)
|
|
B = MatrixSymbol("B", 1, 3)
|
|
C = MatrixSymbol("C", 1, 3)
|
|
|
|
assert(rcode(A[0, 0]) == "A[0]")
|
|
assert(rcode(3 * A[0, 0]) == "3*A[0]")
|
|
|
|
F = C[0, 0].subs(C, A - B)
|
|
assert(rcode(F) == "(A - B)[0]")
|