56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
import types
|
|
|
|
import torch._C
|
|
|
|
|
|
class _ClassNamespace(types.ModuleType):
|
|
def __init__(self, name):
|
|
super().__init__("torch.classes" + name)
|
|
self.name = name
|
|
|
|
def __getattr__(self, attr):
|
|
proxy = torch._C._get_custom_class_python_wrapper(self.name, attr)
|
|
if proxy is None:
|
|
raise RuntimeError(f"Class {self.name}.{attr} not registered!")
|
|
return proxy
|
|
|
|
|
|
class _Classes(types.ModuleType):
|
|
__file__ = "_classes.py"
|
|
|
|
def __init__(self):
|
|
super().__init__("torch.classes")
|
|
|
|
def __getattr__(self, name):
|
|
namespace = _ClassNamespace(name)
|
|
setattr(self, name, namespace)
|
|
return namespace
|
|
|
|
@property
|
|
def loaded_libraries(self):
|
|
return torch.ops.loaded_libraries
|
|
|
|
def load_library(self, path):
|
|
"""
|
|
Loads a shared library from the given path into the current process.
|
|
|
|
The library being loaded may run global initialization code to register
|
|
custom classes with the PyTorch JIT runtime. This allows dynamically
|
|
loading custom classes. For this, you should compile your class
|
|
and the static registration code into a shared library object, and then
|
|
call ``torch.classes.load_library('path/to/libcustom.so')`` to load the
|
|
shared object.
|
|
|
|
After the library is loaded, it is added to the
|
|
``torch.classes.loaded_libraries`` attribute, a set that may be inspected
|
|
for the paths of all libraries loaded using this function.
|
|
|
|
Args:
|
|
path (str): A path to a shared library to load.
|
|
"""
|
|
torch.ops.load_library(path)
|
|
|
|
|
|
# The classes "namespace"
|
|
classes = _Classes()
|