138 lines
4.0 KiB
Python
138 lines
4.0 KiB
Python
import collections
|
|
import warnings
|
|
from typing import Optional, Sequence, Union
|
|
|
|
import torch.cuda
|
|
|
|
|
|
__all__ = ["all_reduce", "reduce", "broadcast", "all_gather", "reduce_scatter"]
|
|
|
|
SUM = 0 # ncclRedOp_t
|
|
|
|
|
|
def is_available(tensors):
|
|
if not hasattr(torch._C, "_nccl_all_reduce"):
|
|
warnings.warn("PyTorch is not compiled with NCCL support")
|
|
return False
|
|
|
|
devices = set()
|
|
for tensor in tensors:
|
|
if tensor.is_sparse:
|
|
return False
|
|
if not tensor.is_contiguous():
|
|
return False
|
|
if not tensor.is_cuda:
|
|
return False
|
|
device = tensor.get_device()
|
|
if device in devices:
|
|
return False
|
|
devices.add(device)
|
|
|
|
return True
|
|
|
|
|
|
def version():
|
|
ver = torch._C._nccl_version()
|
|
major = ver >> 32
|
|
minor = (ver >> 16) & 65535
|
|
patch = ver & 65535
|
|
suffix = torch._C._nccl_version_suffix().decode("utf-8")
|
|
if suffix == "":
|
|
return (major, minor, patch)
|
|
else:
|
|
return (major, minor, patch, suffix)
|
|
|
|
|
|
def unique_id():
|
|
return torch._C._nccl_unique_id()
|
|
|
|
|
|
def init_rank(num_ranks, uid, rank):
|
|
return torch._C._nccl_init_rank(num_ranks, uid, rank)
|
|
|
|
|
|
def _check_sequence_type(inputs: Union[torch.Tensor, Sequence[torch.Tensor]]) -> None:
|
|
if not isinstance(inputs, collections.abc.Container) or isinstance(
|
|
inputs, torch.Tensor
|
|
):
|
|
raise TypeError("Inputs should be a collection of tensors")
|
|
|
|
|
|
def all_reduce(inputs, outputs=None, op=SUM, streams=None, comms=None):
|
|
_check_sequence_type(inputs)
|
|
if outputs is None:
|
|
outputs = inputs
|
|
_check_sequence_type(outputs)
|
|
torch._C._nccl_all_reduce(inputs, outputs, op, streams, comms)
|
|
|
|
|
|
# `output` used to be `outputs`, taking in a list of tensors. So we have two
|
|
# arguments for BC reasons.
|
|
def reduce(
|
|
inputs: Sequence[torch.Tensor],
|
|
output: Optional[Union[torch.Tensor, Sequence[torch.Tensor]]] = None,
|
|
root: int = 0,
|
|
op: int = SUM,
|
|
streams: Optional[Sequence[torch.cuda.Stream]] = None,
|
|
comms=None,
|
|
*,
|
|
outputs: Optional[Sequence[torch.Tensor]] = None,
|
|
) -> None:
|
|
_check_sequence_type(inputs)
|
|
_output: torch.Tensor
|
|
if outputs is not None:
|
|
if output is not None:
|
|
raise ValueError(
|
|
"'output' and 'outputs' can not be both specified. 'outputs' is deprecated in "
|
|
"favor of 'output', taking in a single output tensor. The signature of reduce is: "
|
|
"reduce(inputs, output=None, root=0, op=SUM, streams=None, comms=None)."
|
|
)
|
|
else:
|
|
warnings.warn(
|
|
"nccl.reduce with an output tensor list is deprecated. "
|
|
"Please specify a single output tensor with argument 'output' instead instead."
|
|
)
|
|
_output = outputs[root]
|
|
elif not isinstance(output, torch.Tensor) and isinstance(
|
|
output, collections.abc.Sequence
|
|
):
|
|
# User called old API with positional arguments of list of output tensors.
|
|
warnings.warn(
|
|
"nccl.reduce with an output tensor list is deprecated. "
|
|
"Please specify a single output tensor."
|
|
)
|
|
_output = output[root]
|
|
else:
|
|
_output = inputs[root] if output is None else output
|
|
torch._C._nccl_reduce(inputs, _output, root, op, streams, comms)
|
|
|
|
|
|
def broadcast(
|
|
inputs: Sequence[torch.Tensor], root: int = 0, streams=None, comms=None
|
|
) -> None:
|
|
_check_sequence_type(inputs)
|
|
torch._C._nccl_broadcast(inputs, root, streams, comms)
|
|
|
|
|
|
def all_gather(
|
|
inputs: Sequence[torch.Tensor],
|
|
outputs: Sequence[torch.Tensor],
|
|
streams=None,
|
|
comms=None,
|
|
) -> None:
|
|
_check_sequence_type(inputs)
|
|
_check_sequence_type(outputs)
|
|
torch._C._nccl_all_gather(inputs, outputs, streams, comms)
|
|
|
|
|
|
def reduce_scatter(
|
|
inputs: Sequence[torch.Tensor],
|
|
outputs: Sequence[torch.Tensor],
|
|
op: int = SUM,
|
|
streams=None,
|
|
comms=None,
|
|
) -> None:
|
|
_check_sequence_type(inputs)
|
|
_check_sequence_type(outputs)
|
|
torch._C._nccl_reduce_scatter(inputs, outputs, op, streams, comms)
|