Traktor/myenv/Lib/site-packages/torch/nn/parallel/replicate.py
2024-05-23 01:57:24 +02:00

187 lines
6.6 KiB
Python

import torch
from ..modules import Module
from . import comm
from typing import TYPE_CHECKING, Dict, Iterator, List, Optional, Sequence, Set, TypeVar, Union, cast
from torch._utils import _get_device_index
from collections import OrderedDict
if TYPE_CHECKING:
import torch.jit
import torch.jit._state
__all__ = ['replicate']
def _is_script_module(module: Module) -> bool:
import torch.jit
return isinstance(module, torch.jit.ScriptModule)
def _is_script_method(module: Module) -> bool:
import torch.jit
return isinstance(module, torch._C.ScriptMethod)
def _init_script_module() -> "torch.jit.ScriptModule":
import torch.jit
return torch.jit.ScriptModule()
def _is_jit_enabled() -> "torch.jit._state.EnabledProxy":
import torch.jit._state
return torch.jit._state._enabled
# Check if we can safely replicate the module.
# there are two types of module:
# 1. python modules
# 2. ScriptModule
#
# currently a module cannot be replicated properly if the descendants of
# any ScriptModule contains python module (type 1 above)
def _replicatable_module(module: Module, memo: Optional[Set[Module]] = None) -> bool:
# module.modules() contains module itself as the first element
def descendant_modules(module: Module) -> Iterator[Module]:
gen = module.modules()
next(gen)
return gen
if not _is_jit_enabled():
return True
if memo is None:
memo = set()
# memoize visited modules
memo.add(module)
if _is_script_module(module):
memo.update(descendant_modules(module))
return all(_is_script_module(descendant) for
descendant in descendant_modules(module))
for child in module.children():
# since any unreplicatable module will cause the check to return
# False early, visited modules here can be safely ignored.
if child in memo:
continue
if not _replicatable_module(child, memo):
return False
return True
def _broadcast_coalesced_reshape(
tensors: Sequence[torch.Tensor],
devices: Sequence[Union[int, torch.device]],
detach: bool = False,
) -> List[List[torch.Tensor]]:
from ._functions import Broadcast
if detach:
return comm.broadcast_coalesced(tensors, devices)
else:
# Use the autograd function to broadcast if not detach
if len(tensors) > 0:
tensor_copies = Broadcast.apply(devices, *tensors)
return [tensor_copies[i:i + len(tensors)]
for i in range(0, len(tensor_copies), len(tensors))]
else:
return []
T = TypeVar("T", bound=Module)
def replicate(
network: T,
devices: Sequence[Union[int, torch.device]],
detach: bool = False,
) -> List[T]:
if not _replicatable_module(network):
raise RuntimeError("Cannot replicate network where python modules are "
"childrens of ScriptModule")
if not devices:
return []
devices = [_get_device_index(x, True) for x in devices]
num_replicas = len(devices)
params = list(network.parameters())
param_indices = {param: idx for idx, param in enumerate(params)}
param_copies = _broadcast_coalesced_reshape(params, devices, detach)
buffers = list(network.buffers())
buffers_rg: List[torch.Tensor] = []
buffers_not_rg: List[torch.Tensor] = []
for buf in buffers:
if buf.requires_grad and not detach:
buffers_rg.append(buf)
else:
buffers_not_rg.append(buf)
buffer_indices_rg = {buf: idx for idx, buf in enumerate(buffers_rg)}
buffer_indices_not_rg = {buf: idx for idx, buf in enumerate(buffers_not_rg)}
buffer_copies_rg = _broadcast_coalesced_reshape(buffers_rg, devices, detach=detach)
buffer_copies_not_rg = _broadcast_coalesced_reshape(buffers_not_rg, devices, detach=True)
modules = list(network.modules())
module_copies: List[List[Module]] = [[] for _ in devices]
module_indices: Dict[Module, int] = {}
for i, module in enumerate(modules):
module_indices[module] = i
for j in range(num_replicas):
replica = module._replicate_for_data_parallel()
# This is a temporary fix for DDP. DDP needs to access the
# replicated model parameters. It used to do so through
# `mode.parameters()`. The fix added in #33907 for DP stops the
# `parameters()` API from exposing the replicated parameters.
# Hence, we add a `_former_parameters` dict here to support DDP.
replica._former_parameters = OrderedDict()
module_copies[j].append(replica)
for i, module in enumerate(modules):
for key, child in module._modules.items():
if child is None:
for j in range(num_replicas):
replica = module_copies[j][i]
replica._modules[key] = None
else:
module_idx = module_indices[child]
for j in range(num_replicas):
replica = module_copies[j][i]
setattr(replica, key, module_copies[j][module_idx])
for key, param in module._parameters.items():
if param is None:
for j in range(num_replicas):
replica = module_copies[j][i]
replica._parameters[key] = None
else:
param_idx = param_indices[param]
for j in range(num_replicas):
replica = module_copies[j][i]
param_copy = param_copies[j][param_idx]
# parameters in replicas are no longer leaves,
# so setattr them as non-parameter attributes
setattr(replica, key, param_copy)
# expose the parameter for DDP
replica._former_parameters[key] = param_copy
for key, buf in module._buffers.items(): # type: ignore[assignment]
if buf is None:
for j in range(num_replicas):
replica = module_copies[j][i]
replica._buffers[key] = None
else:
if buf.requires_grad and not detach:
buffer_copies = buffer_copies_rg
buffer_idx = buffer_indices_rg[buf]
else:
buffer_copies = buffer_copies_not_rg
buffer_idx = buffer_indices_not_rg[buf]
for j in range(num_replicas):
replica = module_copies[j][i]
setattr(replica, key, buffer_copies[j][buffer_idx])
return [cast(T, module_copies[j][0]) for j in range(num_replicas)]