169 lines
5.7 KiB
Python
169 lines
5.7 KiB
Python
import os.path
|
|
import pickle
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from .utils import check_integrity, download_and_extract_archive
|
|
from .vision import VisionDataset
|
|
|
|
|
|
class CIFAR10(VisionDataset):
|
|
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of dataset where directory
|
|
``cifar-10-batches-py`` exists or will be saved to if download is set to True.
|
|
train (bool, optional): If True, creates dataset from training set, otherwise
|
|
creates from test set.
|
|
transform (callable, optional): A function/transform that takes in a PIL image
|
|
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
|
target_transform (callable, optional): A function/transform that takes in the
|
|
target and transforms it.
|
|
download (bool, optional): If true, downloads the dataset from the internet and
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
downloaded again.
|
|
|
|
"""
|
|
|
|
base_folder = "cifar-10-batches-py"
|
|
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
|
|
filename = "cifar-10-python.tar.gz"
|
|
tgz_md5 = "c58f30108f718f92721af3b95e74349a"
|
|
train_list = [
|
|
["data_batch_1", "c99cafc152244af753f735de768cd75f"],
|
|
["data_batch_2", "d4bba439e000b95fd0a9bffe97cbabec"],
|
|
["data_batch_3", "54ebc095f3ab1f0389bbae665268c751"],
|
|
["data_batch_4", "634d18415352ddfa80567beed471001a"],
|
|
["data_batch_5", "482c414d41f54cd18b22e5b47cb7c3cb"],
|
|
]
|
|
|
|
test_list = [
|
|
["test_batch", "40351d587109b95175f43aff81a1287e"],
|
|
]
|
|
meta = {
|
|
"filename": "batches.meta",
|
|
"key": "label_names",
|
|
"md5": "5ff9c542aee3614f3951f8cda6e48888",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
train: bool = True,
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
download: bool = False,
|
|
) -> None:
|
|
|
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
|
|
|
self.train = train # training set or test set
|
|
|
|
if download:
|
|
self.download()
|
|
|
|
if not self._check_integrity():
|
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
|
|
|
if self.train:
|
|
downloaded_list = self.train_list
|
|
else:
|
|
downloaded_list = self.test_list
|
|
|
|
self.data: Any = []
|
|
self.targets = []
|
|
|
|
# now load the picked numpy arrays
|
|
for file_name, checksum in downloaded_list:
|
|
file_path = os.path.join(self.root, self.base_folder, file_name)
|
|
with open(file_path, "rb") as f:
|
|
entry = pickle.load(f, encoding="latin1")
|
|
self.data.append(entry["data"])
|
|
if "labels" in entry:
|
|
self.targets.extend(entry["labels"])
|
|
else:
|
|
self.targets.extend(entry["fine_labels"])
|
|
|
|
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
|
|
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
|
|
|
self._load_meta()
|
|
|
|
def _load_meta(self) -> None:
|
|
path = os.path.join(self.root, self.base_folder, self.meta["filename"])
|
|
if not check_integrity(path, self.meta["md5"]):
|
|
raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it")
|
|
with open(path, "rb") as infile:
|
|
data = pickle.load(infile, encoding="latin1")
|
|
self.classes = data[self.meta["key"]]
|
|
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
|
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
|
"""
|
|
Args:
|
|
index (int): Index
|
|
|
|
Returns:
|
|
tuple: (image, target) where target is index of the target class.
|
|
"""
|
|
img, target = self.data[index], self.targets[index]
|
|
|
|
# doing this so that it is consistent with all other datasets
|
|
# to return a PIL Image
|
|
img = Image.fromarray(img)
|
|
|
|
if self.transform is not None:
|
|
img = self.transform(img)
|
|
|
|
if self.target_transform is not None:
|
|
target = self.target_transform(target)
|
|
|
|
return img, target
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.data)
|
|
|
|
def _check_integrity(self) -> bool:
|
|
for filename, md5 in self.train_list + self.test_list:
|
|
fpath = os.path.join(self.root, self.base_folder, filename)
|
|
if not check_integrity(fpath, md5):
|
|
return False
|
|
return True
|
|
|
|
def download(self) -> None:
|
|
if self._check_integrity():
|
|
print("Files already downloaded and verified")
|
|
return
|
|
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
|
|
|
|
def extra_repr(self) -> str:
|
|
split = "Train" if self.train is True else "Test"
|
|
return f"Split: {split}"
|
|
|
|
|
|
class CIFAR100(CIFAR10):
|
|
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
|
|
|
This is a subclass of the `CIFAR10` Dataset.
|
|
"""
|
|
|
|
base_folder = "cifar-100-python"
|
|
url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
|
|
filename = "cifar-100-python.tar.gz"
|
|
tgz_md5 = "eb9058c3a382ffc7106e4002c42a8d85"
|
|
train_list = [
|
|
["train", "16019d7e3df5f24257cddd939b257f8d"],
|
|
]
|
|
|
|
test_list = [
|
|
["test", "f0ef6b0ae62326f3e7ffdfab6717acfc"],
|
|
]
|
|
meta = {
|
|
"filename": "meta",
|
|
"key": "fine_label_names",
|
|
"md5": "7973b15100ade9c7d40fb424638fde48",
|
|
}
|