Traktor/myenv/Lib/site-packages/torchvision/datasets/dtd.py
2024-05-23 01:57:24 +02:00

101 lines
3.9 KiB
Python

import os
import pathlib
from typing import Any, Callable, Optional, Tuple, Union
import PIL.Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
class DTD(VisionDataset):
"""`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_.
Args:
root (str or ``pathlib.Path``): Root directory of the dataset.
split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``.
.. note::
The partition only changes which split each image belongs to. Thus, regardless of the selected
partition, combining all splits will result in all images.
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
download (bool, optional): If True, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again. Default is False.
"""
_URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz"
_MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1"
def __init__(
self,
root: Union[str, pathlib.Path],
split: str = "train",
partition: int = 1,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self._split = verify_str_arg(split, "split", ("train", "val", "test"))
if not isinstance(partition, int) and not (1 <= partition <= 10):
raise ValueError(
f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, "
f"but got {partition} instead"
)
self._partition = partition
super().__init__(root, transform=transform, target_transform=target_transform)
self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower()
self._data_folder = self._base_folder / "dtd"
self._meta_folder = self._data_folder / "labels"
self._images_folder = self._data_folder / "images"
if download:
self._download()
if not self._check_exists():
raise RuntimeError("Dataset not found. You can use download=True to download it")
self._image_files = []
classes = []
with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file:
for line in file:
cls, name = line.strip().split("/")
self._image_files.append(self._images_folder.joinpath(cls, name))
classes.append(cls)
self.classes = sorted(set(classes))
self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
self._labels = [self.class_to_idx[cls] for cls in classes]
def __len__(self) -> int:
return len(self._image_files)
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
image_file, label = self._image_files[idx], self._labels[idx]
image = PIL.Image.open(image_file).convert("RGB")
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
def extra_repr(self) -> str:
return f"split={self._split}, partition={self._partition}"
def _check_exists(self) -> bool:
return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder)
def _download(self) -> None:
if self._check_exists():
return
download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)