153 lines
5.8 KiB
Python
153 lines
5.8 KiB
Python
import glob
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
from torch import Tensor
|
|
|
|
from .folder import find_classes, make_dataset
|
|
from .video_utils import VideoClips
|
|
from .vision import VisionDataset
|
|
|
|
|
|
class HMDB51(VisionDataset):
|
|
"""
|
|
`HMDB51 <https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/>`_
|
|
dataset.
|
|
|
|
HMDB51 is an action recognition video dataset.
|
|
This dataset consider every video as a collection of video clips of fixed size, specified
|
|
by ``frames_per_clip``, where the step in frames between each clip is given by
|
|
``step_between_clips``.
|
|
|
|
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
|
|
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
|
|
elements will come from video 1, and the next three elements from video 2.
|
|
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
|
|
frames in a video might be present.
|
|
|
|
Internally, it uses a VideoClips object to handle clip creation.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of the HMDB51 Dataset.
|
|
annotation_path (str): Path to the folder containing the split files.
|
|
frames_per_clip (int): Number of frames in a clip.
|
|
step_between_clips (int): Number of frames between each clip.
|
|
fold (int, optional): Which fold to use. Should be between 1 and 3.
|
|
train (bool, optional): If ``True``, creates a dataset from the train split,
|
|
otherwise from the ``test`` split.
|
|
transform (callable, optional): A function/transform that takes in a TxHxWxC video
|
|
and returns a transformed version.
|
|
output_format (str, optional): The format of the output video tensors (before transforms).
|
|
Can be either "THWC" (default) or "TCHW".
|
|
|
|
Returns:
|
|
tuple: A 3-tuple with the following entries:
|
|
|
|
- video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames
|
|
- audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
|
|
and `L` is the number of points
|
|
- label (int): class of the video clip
|
|
"""
|
|
|
|
data_url = "https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar"
|
|
splits = {
|
|
"url": "https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/test_train_splits.rar",
|
|
"md5": "15e67781e70dcfbdce2d7dbb9b3344b5",
|
|
}
|
|
TRAIN_TAG = 1
|
|
TEST_TAG = 2
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
annotation_path: str,
|
|
frames_per_clip: int,
|
|
step_between_clips: int = 1,
|
|
frame_rate: Optional[int] = None,
|
|
fold: int = 1,
|
|
train: bool = True,
|
|
transform: Optional[Callable] = None,
|
|
_precomputed_metadata: Optional[Dict[str, Any]] = None,
|
|
num_workers: int = 1,
|
|
_video_width: int = 0,
|
|
_video_height: int = 0,
|
|
_video_min_dimension: int = 0,
|
|
_audio_samples: int = 0,
|
|
output_format: str = "THWC",
|
|
) -> None:
|
|
super().__init__(root)
|
|
if fold not in (1, 2, 3):
|
|
raise ValueError(f"fold should be between 1 and 3, got {fold}")
|
|
|
|
extensions = ("avi",)
|
|
self.classes, class_to_idx = find_classes(self.root)
|
|
self.samples = make_dataset(
|
|
self.root,
|
|
class_to_idx,
|
|
extensions,
|
|
)
|
|
|
|
video_paths = [path for (path, _) in self.samples]
|
|
video_clips = VideoClips(
|
|
video_paths,
|
|
frames_per_clip,
|
|
step_between_clips,
|
|
frame_rate,
|
|
_precomputed_metadata,
|
|
num_workers=num_workers,
|
|
_video_width=_video_width,
|
|
_video_height=_video_height,
|
|
_video_min_dimension=_video_min_dimension,
|
|
_audio_samples=_audio_samples,
|
|
output_format=output_format,
|
|
)
|
|
# we bookkeep the full version of video clips because we want to be able
|
|
# to return the metadata of full version rather than the subset version of
|
|
# video clips
|
|
self.full_video_clips = video_clips
|
|
self.fold = fold
|
|
self.train = train
|
|
self.indices = self._select_fold(video_paths, annotation_path, fold, train)
|
|
self.video_clips = video_clips.subset(self.indices)
|
|
self.transform = transform
|
|
|
|
@property
|
|
def metadata(self) -> Dict[str, Any]:
|
|
return self.full_video_clips.metadata
|
|
|
|
def _select_fold(self, video_list: List[str], annotations_dir: str, fold: int, train: bool) -> List[int]:
|
|
target_tag = self.TRAIN_TAG if train else self.TEST_TAG
|
|
split_pattern_name = f"*test_split{fold}.txt"
|
|
split_pattern_path = os.path.join(annotations_dir, split_pattern_name)
|
|
annotation_paths = glob.glob(split_pattern_path)
|
|
selected_files = set()
|
|
for filepath in annotation_paths:
|
|
with open(filepath) as fid:
|
|
lines = fid.readlines()
|
|
for line in lines:
|
|
video_filename, tag_string = line.split()
|
|
tag = int(tag_string)
|
|
if tag == target_tag:
|
|
selected_files.add(video_filename)
|
|
|
|
indices = []
|
|
for video_index, video_path in enumerate(video_list):
|
|
if os.path.basename(video_path) in selected_files:
|
|
indices.append(video_index)
|
|
|
|
return indices
|
|
|
|
def __len__(self) -> int:
|
|
return self.video_clips.num_clips()
|
|
|
|
def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
|
|
video, audio, _, video_idx = self.video_clips.get_clip(idx)
|
|
sample_index = self.indices[video_idx]
|
|
_, class_index = self.samples[sample_index]
|
|
|
|
if self.transform is not None:
|
|
video = self.transform(video)
|
|
|
|
return video, audio, class_index
|