321 lines
13 KiB
Python
321 lines
13 KiB
Python
import warnings
|
|
from typing import Callable, List, Optional, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
from ..utils import _log_api_usage_once, _make_ntuple
|
|
|
|
|
|
interpolate = torch.nn.functional.interpolate
|
|
|
|
|
|
class FrozenBatchNorm2d(torch.nn.Module):
|
|
"""
|
|
BatchNorm2d where the batch statistics and the affine parameters are fixed
|
|
|
|
Args:
|
|
num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
|
|
eps (float): a value added to the denominator for numerical stability. Default: 1e-5
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_features: int,
|
|
eps: float = 1e-5,
|
|
):
|
|
super().__init__()
|
|
_log_api_usage_once(self)
|
|
self.eps = eps
|
|
self.register_buffer("weight", torch.ones(num_features))
|
|
self.register_buffer("bias", torch.zeros(num_features))
|
|
self.register_buffer("running_mean", torch.zeros(num_features))
|
|
self.register_buffer("running_var", torch.ones(num_features))
|
|
|
|
def _load_from_state_dict(
|
|
self,
|
|
state_dict: dict,
|
|
prefix: str,
|
|
local_metadata: dict,
|
|
strict: bool,
|
|
missing_keys: List[str],
|
|
unexpected_keys: List[str],
|
|
error_msgs: List[str],
|
|
):
|
|
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
if num_batches_tracked_key in state_dict:
|
|
del state_dict[num_batches_tracked_key]
|
|
|
|
super()._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
# move reshapes to the beginning
|
|
# to make it fuser-friendly
|
|
w = self.weight.reshape(1, -1, 1, 1)
|
|
b = self.bias.reshape(1, -1, 1, 1)
|
|
rv = self.running_var.reshape(1, -1, 1, 1)
|
|
rm = self.running_mean.reshape(1, -1, 1, 1)
|
|
scale = w * (rv + self.eps).rsqrt()
|
|
bias = b - rm * scale
|
|
return x * scale + bias
|
|
|
|
def __repr__(self) -> str:
|
|
return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps})"
|
|
|
|
|
|
class ConvNormActivation(torch.nn.Sequential):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, Tuple[int, ...]] = 3,
|
|
stride: Union[int, Tuple[int, ...]] = 1,
|
|
padding: Optional[Union[int, Tuple[int, ...], str]] = None,
|
|
groups: int = 1,
|
|
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
|
|
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
|
dilation: Union[int, Tuple[int, ...]] = 1,
|
|
inplace: Optional[bool] = True,
|
|
bias: Optional[bool] = None,
|
|
conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
|
|
) -> None:
|
|
|
|
if padding is None:
|
|
if isinstance(kernel_size, int) and isinstance(dilation, int):
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
else:
|
|
_conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation)
|
|
kernel_size = _make_ntuple(kernel_size, _conv_dim)
|
|
dilation = _make_ntuple(dilation, _conv_dim)
|
|
padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim))
|
|
if bias is None:
|
|
bias = norm_layer is None
|
|
|
|
layers = [
|
|
conv_layer(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
bias=bias,
|
|
)
|
|
]
|
|
|
|
if norm_layer is not None:
|
|
layers.append(norm_layer(out_channels))
|
|
|
|
if activation_layer is not None:
|
|
params = {} if inplace is None else {"inplace": inplace}
|
|
layers.append(activation_layer(**params))
|
|
super().__init__(*layers)
|
|
_log_api_usage_once(self)
|
|
self.out_channels = out_channels
|
|
|
|
if self.__class__ == ConvNormActivation:
|
|
warnings.warn(
|
|
"Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
|
|
)
|
|
|
|
|
|
class Conv2dNormActivation(ConvNormActivation):
|
|
"""
|
|
Configurable block used for Convolution2d-Normalization-Activation blocks.
|
|
|
|
Args:
|
|
in_channels (int): Number of channels in the input image
|
|
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
|
|
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
|
|
stride (int, optional): Stride of the convolution. Default: 1
|
|
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
|
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
|
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
|
|
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
|
|
dilation (int): Spacing between kernel elements. Default: 1
|
|
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
|
|
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, Tuple[int, int]] = 3,
|
|
stride: Union[int, Tuple[int, int]] = 1,
|
|
padding: Optional[Union[int, Tuple[int, int], str]] = None,
|
|
groups: int = 1,
|
|
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
|
|
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
|
dilation: Union[int, Tuple[int, int]] = 1,
|
|
inplace: Optional[bool] = True,
|
|
bias: Optional[bool] = None,
|
|
) -> None:
|
|
|
|
super().__init__(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups,
|
|
norm_layer,
|
|
activation_layer,
|
|
dilation,
|
|
inplace,
|
|
bias,
|
|
torch.nn.Conv2d,
|
|
)
|
|
|
|
|
|
class Conv3dNormActivation(ConvNormActivation):
|
|
"""
|
|
Configurable block used for Convolution3d-Normalization-Activation blocks.
|
|
|
|
Args:
|
|
in_channels (int): Number of channels in the input video.
|
|
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
|
|
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
|
|
stride (int, optional): Stride of the convolution. Default: 1
|
|
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
|
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
|
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm3d``
|
|
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
|
|
dilation (int): Spacing between kernel elements. Default: 1
|
|
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
|
|
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
|
stride: Union[int, Tuple[int, int, int]] = 1,
|
|
padding: Optional[Union[int, Tuple[int, int, int], str]] = None,
|
|
groups: int = 1,
|
|
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm3d,
|
|
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
|
dilation: Union[int, Tuple[int, int, int]] = 1,
|
|
inplace: Optional[bool] = True,
|
|
bias: Optional[bool] = None,
|
|
) -> None:
|
|
|
|
super().__init__(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups,
|
|
norm_layer,
|
|
activation_layer,
|
|
dilation,
|
|
inplace,
|
|
bias,
|
|
torch.nn.Conv3d,
|
|
)
|
|
|
|
|
|
class SqueezeExcitation(torch.nn.Module):
|
|
"""
|
|
This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
|
|
Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.
|
|
|
|
Args:
|
|
input_channels (int): Number of channels in the input image
|
|
squeeze_channels (int): Number of squeeze channels
|
|
activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
|
|
scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels: int,
|
|
squeeze_channels: int,
|
|
activation: Callable[..., torch.nn.Module] = torch.nn.ReLU,
|
|
scale_activation: Callable[..., torch.nn.Module] = torch.nn.Sigmoid,
|
|
) -> None:
|
|
super().__init__()
|
|
_log_api_usage_once(self)
|
|
self.avgpool = torch.nn.AdaptiveAvgPool2d(1)
|
|
self.fc1 = torch.nn.Conv2d(input_channels, squeeze_channels, 1)
|
|
self.fc2 = torch.nn.Conv2d(squeeze_channels, input_channels, 1)
|
|
self.activation = activation()
|
|
self.scale_activation = scale_activation()
|
|
|
|
def _scale(self, input: Tensor) -> Tensor:
|
|
scale = self.avgpool(input)
|
|
scale = self.fc1(scale)
|
|
scale = self.activation(scale)
|
|
scale = self.fc2(scale)
|
|
return self.scale_activation(scale)
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
scale = self._scale(input)
|
|
return scale * input
|
|
|
|
|
|
class MLP(torch.nn.Sequential):
|
|
"""This block implements the multi-layer perceptron (MLP) module.
|
|
|
|
Args:
|
|
in_channels (int): Number of channels of the input
|
|
hidden_channels (List[int]): List of the hidden channel dimensions
|
|
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
|
|
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
|
|
inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
|
|
Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
|
|
bias (bool): Whether to use bias in the linear layer. Default ``True``
|
|
dropout (float): The probability for the dropout layer. Default: 0.0
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
hidden_channels: List[int],
|
|
norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
|
|
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
|
inplace: Optional[bool] = None,
|
|
bias: bool = True,
|
|
dropout: float = 0.0,
|
|
):
|
|
# The addition of `norm_layer` is inspired from the implementation of TorchMultimodal:
|
|
# https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py
|
|
params = {} if inplace is None else {"inplace": inplace}
|
|
|
|
layers = []
|
|
in_dim = in_channels
|
|
for hidden_dim in hidden_channels[:-1]:
|
|
layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias))
|
|
if norm_layer is not None:
|
|
layers.append(norm_layer(hidden_dim))
|
|
layers.append(activation_layer(**params))
|
|
layers.append(torch.nn.Dropout(dropout, **params))
|
|
in_dim = hidden_dim
|
|
|
|
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias))
|
|
layers.append(torch.nn.Dropout(dropout, **params))
|
|
|
|
super().__init__(*layers)
|
|
_log_api_usage_once(self)
|
|
|
|
|
|
class Permute(torch.nn.Module):
|
|
"""This module returns a view of the tensor input with its dimensions permuted.
|
|
|
|
Args:
|
|
dims (List[int]): The desired ordering of dimensions
|
|
"""
|
|
|
|
def __init__(self, dims: List[int]):
|
|
super().__init__()
|
|
self.dims = dims
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return torch.permute(x, self.dims)
|