Traktor/myenv/Lib/site-packages/pandas/tests/extension/base/methods.py
2024-05-26 05:12:46 +02:00

721 lines
26 KiB
Python

import inspect
import operator
import numpy as np
import pytest
from pandas._typing import Dtype
from pandas.core.dtypes.common import is_bool_dtype
from pandas.core.dtypes.dtypes import NumpyEADtype
from pandas.core.dtypes.missing import na_value_for_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.sorting import nargsort
class BaseMethodsTests:
"""Various Series and DataFrame methods."""
def test_hash_pandas_object(self, data):
# _hash_pandas_object should return a uint64 ndarray of the same length
# as the data
from pandas.core.util.hashing import _default_hash_key
res = data._hash_pandas_object(
encoding="utf-8", hash_key=_default_hash_key, categorize=False
)
assert res.dtype == np.uint64
assert res.shape == data.shape
def test_value_counts_default_dropna(self, data):
# make sure we have consistent default dropna kwarg
if not hasattr(data, "value_counts"):
pytest.skip(f"value_counts is not implemented for {type(data)}")
sig = inspect.signature(data.value_counts)
kwarg = sig.parameters["dropna"]
assert kwarg.default is True
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna):
all_data = all_data[:10]
if dropna:
other = all_data[~all_data.isna()]
else:
other = all_data
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
# GH 33172
data = data[:10].unique()
values = np.array(data[~data.isna()])
ser = pd.Series(data, dtype=data.dtype)
result = ser.value_counts(normalize=True).sort_index()
if not isinstance(data, pd.Categorical):
expected = pd.Series(
[1 / len(values)] * len(values), index=result.index, name="proportion"
)
else:
expected = pd.Series(0.0, index=result.index, name="proportion")
expected[result > 0] = 1 / len(values)
if getattr(data.dtype, "storage", "") == "pyarrow" or isinstance(
data.dtype, pd.ArrowDtype
):
# TODO: avoid special-casing
expected = expected.astype("double[pyarrow]")
elif getattr(data.dtype, "storage", "") == "pyarrow_numpy":
# TODO: avoid special-casing
expected = expected.astype("float64")
elif na_value_for_dtype(data.dtype) is pd.NA:
# TODO(GH#44692): avoid special-casing
expected = expected.astype("Float64")
tm.assert_series_equal(result, expected)
def test_count(self, data_missing):
df = pd.DataFrame({"A": data_missing})
result = df.count(axis="columns")
expected = pd.Series([0, 1])
tm.assert_series_equal(result, expected)
def test_series_count(self, data_missing):
# GH#26835
ser = pd.Series(data_missing)
result = ser.count()
expected = 1
assert result == expected
def test_apply_simple_series(self, data):
result = pd.Series(data).apply(id)
assert isinstance(result, pd.Series)
@pytest.mark.parametrize("na_action", [None, "ignore"])
def test_map(self, data_missing, na_action):
result = data_missing.map(lambda x: x, na_action=na_action)
expected = data_missing.to_numpy()
tm.assert_numpy_array_equal(result, expected)
def test_argsort(self, data_for_sorting):
result = pd.Series(data_for_sorting).argsort()
# argsort result gets passed to take, so should be np.intp
expected = pd.Series(np.array([2, 0, 1], dtype=np.intp))
tm.assert_series_equal(result, expected)
def test_argsort_missing_array(self, data_missing_for_sorting):
result = data_missing_for_sorting.argsort()
# argsort result gets passed to take, so should be np.intp
expected = np.array([2, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
def test_argsort_missing(self, data_missing_for_sorting):
msg = "The behavior of Series.argsort in the presence of NA values"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = pd.Series(data_missing_for_sorting).argsort()
expected = pd.Series(np.array([1, -1, 0], dtype=np.intp))
tm.assert_series_equal(result, expected)
def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value):
# GH 24382
is_bool = data_for_sorting.dtype._is_boolean
exp_argmax = 1
exp_argmax_repeated = 3
if is_bool:
# See data_for_sorting docstring
exp_argmax = 0
exp_argmax_repeated = 1
# data_for_sorting -> [B, C, A] with A < B < C
assert data_for_sorting.argmax() == exp_argmax
assert data_for_sorting.argmin() == 2
# with repeated values -> first occurrence
data = data_for_sorting.take([2, 0, 0, 1, 1, 2])
assert data.argmax() == exp_argmax_repeated
assert data.argmin() == 0
# with missing values
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
assert data_missing_for_sorting.argmax() == 0
assert data_missing_for_sorting.argmin() == 2
@pytest.mark.parametrize("method", ["argmax", "argmin"])
def test_argmin_argmax_empty_array(self, method, data):
# GH 24382
err_msg = "attempt to get"
with pytest.raises(ValueError, match=err_msg):
getattr(data[:0], method)()
@pytest.mark.parametrize("method", ["argmax", "argmin"])
def test_argmin_argmax_all_na(self, method, data, na_value):
# all missing with skipna=True is the same as empty
err_msg = "attempt to get"
data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype)
with pytest.raises(ValueError, match=err_msg):
getattr(data_na, method)()
@pytest.mark.parametrize(
"op_name, skipna, expected",
[
("idxmax", True, 0),
("idxmin", True, 2),
("argmax", True, 0),
("argmin", True, 2),
("idxmax", False, np.nan),
("idxmin", False, np.nan),
("argmax", False, -1),
("argmin", False, -1),
],
)
def test_argreduce_series(
self, data_missing_for_sorting, op_name, skipna, expected
):
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
warn = None
msg = "The behavior of Series.argmax/argmin"
if op_name.startswith("arg") and expected == -1:
warn = FutureWarning
if op_name.startswith("idx") and np.isnan(expected):
warn = FutureWarning
msg = f"The behavior of Series.{op_name}"
ser = pd.Series(data_missing_for_sorting)
with tm.assert_produces_warning(warn, match=msg):
result = getattr(ser, op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
def test_argmax_argmin_no_skipna_notimplemented(self, data_missing_for_sorting):
# GH#38733
data = data_missing_for_sorting
with pytest.raises(NotImplementedError, match=""):
data.argmin(skipna=False)
with pytest.raises(NotImplementedError, match=""):
data.argmax(skipna=False)
@pytest.mark.parametrize(
"na_position, expected",
[
("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
],
)
def test_nargsort(self, data_missing_for_sorting, na_position, expected):
# GH 25439
result = nargsort(data_missing_for_sorting, na_position=na_position)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
ser = pd.Series(data_for_sorting)
result = ser.sort_values(ascending=ascending, key=sort_by_key)
expected = ser.iloc[[2, 0, 1]]
if not ascending:
# GH 35922. Expect stable sort
if ser.nunique() == 2:
expected = ser.iloc[[0, 1, 2]]
else:
expected = ser.iloc[[1, 0, 2]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_missing(
self, data_missing_for_sorting, ascending, sort_by_key
):
ser = pd.Series(data_missing_for_sorting)
result = ser.sort_values(ascending=ascending, key=sort_by_key)
if ascending:
expected = ser.iloc[[2, 0, 1]]
else:
expected = ser.iloc[[0, 2, 1]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_frame(self, data_for_sorting, ascending):
df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting})
result = df.sort_values(["A", "B"])
expected = pd.DataFrame(
{"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("keep", ["first", "last", False])
def test_duplicated(self, data, keep):
arr = data.take([0, 1, 0, 1])
result = arr.duplicated(keep=keep)
if keep == "first":
expected = np.array([False, False, True, True])
elif keep == "last":
expected = np.array([True, True, False, False])
else:
expected = np.array([True, True, True, True])
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
def test_unique(self, data, box, method):
duplicated = box(data._from_sequence([data[0], data[0]], dtype=data.dtype))
result = method(duplicated)
assert len(result) == 1
assert isinstance(result, type(data))
assert result[0] == duplicated[0]
def test_factorize(self, data_for_grouping):
codes, uniques = pd.factorize(data_for_grouping, use_na_sentinel=True)
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 0], dtype=np.intp)
expected_uniques = data_for_grouping.take([0, 4])
else:
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 2], dtype=np.intp)
expected_uniques = data_for_grouping.take([0, 4, 7])
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_extension_array_equal(uniques, expected_uniques)
def test_factorize_equivalence(self, data_for_grouping):
codes_1, uniques_1 = pd.factorize(data_for_grouping, use_na_sentinel=True)
codes_2, uniques_2 = data_for_grouping.factorize(use_na_sentinel=True)
tm.assert_numpy_array_equal(codes_1, codes_2)
tm.assert_extension_array_equal(uniques_1, uniques_2)
assert len(uniques_1) == len(pd.unique(uniques_1))
assert uniques_1.dtype == data_for_grouping.dtype
def test_factorize_empty(self, data):
codes, uniques = pd.factorize(data[:0])
expected_codes = np.array([], dtype=np.intp)
expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype)
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_extension_array_equal(uniques, expected_uniques)
def test_fillna_copy_frame(self, data_missing):
arr = data_missing.take([1, 1])
df = pd.DataFrame({"A": arr})
df_orig = df.copy()
filled_val = df.iloc[0, 0]
result = df.fillna(filled_val)
result.iloc[0, 0] = filled_val
tm.assert_frame_equal(df, df_orig)
def test_fillna_copy_series(self, data_missing):
arr = data_missing.take([1, 1])
ser = pd.Series(arr, copy=False)
ser_orig = ser.copy()
filled_val = ser[0]
result = ser.fillna(filled_val)
result.iloc[0] = filled_val
tm.assert_series_equal(ser, ser_orig)
def test_fillna_length_mismatch(self, data_missing):
msg = "Length of 'value' does not match."
with pytest.raises(ValueError, match=msg):
data_missing.fillna(data_missing.take([1]))
# Subclasses can override if we expect e.g Sparse[bool], boolean, pyarrow[bool]
_combine_le_expected_dtype: Dtype = NumpyEADtype("bool")
def test_combine_le(self, data_repeated):
# GH 20825
# Test that combine works when doing a <= (le) comparison
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.array(
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
dtype=self._combine_le_expected_dtype,
)
)
tm.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.array(
[a <= val for a in list(orig_data1)],
dtype=self._combine_le_expected_dtype,
)
)
tm.assert_series_equal(result, expected)
def test_combine_add(self, data_repeated):
# GH 20825
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
# Check if the operation is supported pointwise for our scalars. If not,
# we will expect Series.combine to raise as well.
try:
with np.errstate(over="ignore"):
expected = pd.Series(
orig_data1._from_sequence(
[a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
)
)
except TypeError:
# If the operation is not supported pointwise for our scalars,
# then Series.combine should also raise
with pytest.raises(TypeError):
s1.combine(s2, lambda x1, x2: x1 + x2)
return
result = s1.combine(s2, lambda x1, x2: x1 + x2)
tm.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 + x2)
expected = pd.Series(
orig_data1._from_sequence([a + val for a in list(orig_data1)])
)
tm.assert_series_equal(result, expected)
def test_combine_first(self, data):
# https://github.com/pandas-dev/pandas/issues/24147
a = pd.Series(data[:3])
b = pd.Series(data[2:5], index=[2, 3, 4])
result = a.combine_first(b)
expected = pd.Series(data[:5])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("frame", [True, False])
@pytest.mark.parametrize(
"periods, indices",
[(-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2])],
)
def test_container_shift(self, data, frame, periods, indices):
# https://github.com/pandas-dev/pandas/issues/22386
subset = data[:5]
data = pd.Series(subset, name="A")
expected = pd.Series(subset.take(indices, allow_fill=True), name="A")
if frame:
result = data.to_frame(name="A").assign(B=1).shift(periods)
expected = pd.concat(
[expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1
)
compare = tm.assert_frame_equal
else:
result = data.shift(periods)
compare = tm.assert_series_equal
compare(result, expected)
def test_shift_0_periods(self, data):
# GH#33856 shifting with periods=0 should return a copy, not same obj
result = data.shift(0)
assert data[0] != data[1] # otherwise below is invalid
data[0] = data[1]
assert result[0] != result[1] # i.e. not the same object/view
@pytest.mark.parametrize("periods", [1, -2])
def test_diff(self, data, periods):
data = data[:5]
if is_bool_dtype(data.dtype):
op = operator.xor
else:
op = operator.sub
try:
# does this array implement ops?
op(data, data)
except Exception:
pytest.skip(f"{type(data)} does not support diff")
s = pd.Series(data)
result = s.diff(periods)
expected = pd.Series(op(data, data.shift(periods)))
tm.assert_series_equal(result, expected)
df = pd.DataFrame({"A": data, "B": [1.0] * 5})
result = df.diff(periods)
if periods == 1:
b = [np.nan, 0, 0, 0, 0]
else:
b = [0, 0, 0, np.nan, np.nan]
expected = pd.DataFrame({"A": expected, "B": b})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"periods, indices",
[[-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]]],
)
def test_shift_non_empty_array(self, data, periods, indices):
# https://github.com/pandas-dev/pandas/issues/23911
subset = data[:2]
result = subset.shift(periods)
expected = subset.take(indices, allow_fill=True)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("periods", [-4, -1, 0, 1, 4])
def test_shift_empty_array(self, data, periods):
# https://github.com/pandas-dev/pandas/issues/23911
empty = data[:0]
result = empty.shift(periods)
expected = empty
tm.assert_extension_array_equal(result, expected)
def test_shift_zero_copies(self, data):
# GH#31502
result = data.shift(0)
assert result is not data
result = data[:0].shift(2)
assert result is not data
def test_shift_fill_value(self, data):
arr = data[:4]
fill_value = data[0]
result = arr.shift(1, fill_value=fill_value)
expected = data.take([0, 0, 1, 2])
tm.assert_extension_array_equal(result, expected)
result = arr.shift(-2, fill_value=fill_value)
expected = data.take([2, 3, 0, 0])
tm.assert_extension_array_equal(result, expected)
def test_not_hashable(self, data):
# We are in general mutable, so not hashable
with pytest.raises(TypeError, match="unhashable type"):
hash(data)
def test_hash_pandas_object_works(self, data, as_frame):
# https://github.com/pandas-dev/pandas/issues/23066
data = pd.Series(data)
if as_frame:
data = data.to_frame()
a = pd.util.hash_pandas_object(data)
b = pd.util.hash_pandas_object(data)
tm.assert_equal(a, b)
def test_searchsorted(self, data_for_sorting, as_series):
if data_for_sorting.dtype._is_boolean:
return self._test_searchsorted_bool_dtypes(data_for_sorting, as_series)
b, c, a = data_for_sorting
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
assert arr.searchsorted(c) == 2
assert arr.searchsorted(c, side="right") == 3
result = arr.searchsorted(arr.take([0, 2]))
expected = np.array([0, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 2, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
def _test_searchsorted_bool_dtypes(self, data_for_sorting, as_series):
# We call this from test_searchsorted in cases where we have a
# boolean-like dtype. The non-bool test assumes we have more than 2
# unique values.
dtype = data_for_sorting.dtype
data_for_sorting = pd.array([True, False], dtype=dtype)
b, a = data_for_sorting
arr = type(data_for_sorting)._from_sequence([a, b])
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
result = arr.searchsorted(arr.take([0, 1]))
expected = np.array([0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
def test_where_series(self, data, na_value, as_frame):
assert data[0] != data[1]
cls = type(data)
a, b = data[:2]
orig = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
ser = orig.copy()
cond = np.array([True, True, False, False])
if as_frame:
ser = ser.to_frame(name="a")
cond = cond.reshape(-1, 1)
result = ser.where(cond)
expected = pd.Series(
cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype)
)
if as_frame:
expected = expected.to_frame(name="a")
tm.assert_equal(result, expected)
ser.mask(~cond, inplace=True)
tm.assert_equal(ser, expected)
# array other
ser = orig.copy()
if as_frame:
ser = ser.to_frame(name="a")
cond = np.array([True, False, True, True])
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
if as_frame:
other = pd.DataFrame({"a": other})
cond = pd.DataFrame({"a": cond})
result = ser.where(cond, other)
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
if as_frame:
expected = expected.to_frame(name="a")
tm.assert_equal(result, expected)
ser.mask(~cond, other, inplace=True)
tm.assert_equal(ser, expected)
@pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
def test_repeat(self, data, repeats, as_series, use_numpy):
arr = type(data)._from_sequence(data[:3], dtype=data.dtype)
if as_series:
arr = pd.Series(arr)
result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats)
repeats = [repeats] * 3 if isinstance(repeats, int) else repeats
expected = [x for x, n in zip(arr, repeats) for _ in range(n)]
expected = type(data)._from_sequence(expected, dtype=data.dtype)
if as_series:
expected = pd.Series(expected, index=arr.index.repeat(repeats))
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"repeats, kwargs, error, msg",
[
(2, {"axis": 1}, ValueError, "axis"),
(-1, {}, ValueError, "negative"),
([1, 2], {}, ValueError, "shape"),
(2, {"foo": "bar"}, TypeError, "'foo'"),
],
)
def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy):
with pytest.raises(error, match=msg):
if use_numpy:
np.repeat(data, repeats, **kwargs)
else:
data.repeat(repeats, **kwargs)
def test_delete(self, data):
result = data.delete(0)
expected = data[1:]
tm.assert_extension_array_equal(result, expected)
result = data.delete([1, 3])
expected = data._concat_same_type([data[[0]], data[[2]], data[4:]])
tm.assert_extension_array_equal(result, expected)
def test_insert(self, data):
# insert at the beginning
result = data[1:].insert(0, data[0])
tm.assert_extension_array_equal(result, data)
result = data[1:].insert(-len(data[1:]), data[0])
tm.assert_extension_array_equal(result, data)
# insert at the middle
result = data[:-1].insert(4, data[-1])
taker = np.arange(len(data))
taker[5:] = taker[4:-1]
taker[4] = len(data) - 1
expected = data.take(taker)
tm.assert_extension_array_equal(result, expected)
def test_insert_invalid(self, data, invalid_scalar):
item = invalid_scalar
with pytest.raises((TypeError, ValueError)):
data.insert(0, item)
with pytest.raises((TypeError, ValueError)):
data.insert(4, item)
with pytest.raises((TypeError, ValueError)):
data.insert(len(data) - 1, item)
def test_insert_invalid_loc(self, data):
ub = len(data)
with pytest.raises(IndexError):
data.insert(ub + 1, data[0])
with pytest.raises(IndexError):
data.insert(-ub - 1, data[0])
with pytest.raises(TypeError):
# we expect TypeError here instead of IndexError to match np.insert
data.insert(1.5, data[0])
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
def test_equals(self, data, na_value, as_series, box):
data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype)
data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype)
data = tm.box_expected(data, box, transpose=False)
data2 = tm.box_expected(data2, box, transpose=False)
data_na = tm.box_expected(data_na, box, transpose=False)
# we are asserting with `is True/False` explicitly, to test that the
# result is an actual Python bool, and not something "truthy"
assert data.equals(data) is True
assert data.equals(data.copy()) is True
# unequal other data
assert data.equals(data2) is False
assert data.equals(data_na) is False
# different length
assert data[:2].equals(data[:3]) is False
# empty are equal
assert data[:0].equals(data[:0]) is True
# other types
assert data.equals(None) is False
assert data[[0]].equals(data[0]) is False
def test_equals_same_data_different_object(self, data):
# https://github.com/pandas-dev/pandas/issues/34660
assert pd.Series(data).equals(pd.Series(data))