Traktor/myenv/Lib/site-packages/pandas/tests/window/test_apply.py
2024-05-26 05:12:46 +02:00

329 lines
9.6 KiB
Python

import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
concat,
date_range,
isna,
notna,
)
import pandas._testing as tm
from pandas.tseries import offsets
# suppress warnings about empty slices, as we are deliberately testing
# with a 0-length Series
pytestmark = pytest.mark.filterwarnings(
"ignore:.*(empty slice|0 for slice).*:RuntimeWarning"
)
def f(x):
return x[np.isfinite(x)].mean()
@pytest.mark.parametrize("bad_raw", [None, 1, 0])
def test_rolling_apply_invalid_raw(bad_raw):
with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"):
Series(range(3)).rolling(1).apply(len, raw=bad_raw)
def test_rolling_apply_out_of_bounds(engine_and_raw):
# gh-1850
engine, raw = engine_and_raw
vals = Series([1, 2, 3, 4])
result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw)
assert result.isna().all()
result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw)
expected = Series([1, 3, 6, 10], dtype=float)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize("window", [2, "2s"])
def test_rolling_apply_with_pandas_objects(window):
# 5071
df = DataFrame(
{
"A": np.random.default_rng(2).standard_normal(5),
"B": np.random.default_rng(2).integers(0, 10, size=5),
},
index=date_range("20130101", periods=5, freq="s"),
)
# we have an equal spaced timeseries index
# so simulate removing the first period
def f(x):
if x.index[0] == df.index[0]:
return np.nan
return x.iloc[-1]
result = df.rolling(window).apply(f, raw=False)
expected = df.iloc[2:].reindex_like(df)
tm.assert_frame_equal(result, expected)
with tm.external_error_raised(AttributeError):
df.rolling(window).apply(f, raw=True)
def test_rolling_apply(engine_and_raw, step):
engine, raw = engine_and_raw
expected = Series([], dtype="float64")
result = expected.rolling(10, step=step).apply(
lambda x: x.mean(), engine=engine, raw=raw
)
tm.assert_series_equal(result, expected)
# gh-8080
s = Series([None, None, None])
result = s.rolling(2, min_periods=0, step=step).apply(
lambda x: len(x), engine=engine, raw=raw
)
expected = Series([1.0, 2.0, 2.0])[::step]
tm.assert_series_equal(result, expected)
result = s.rolling(2, min_periods=0, step=step).apply(len, engine=engine, raw=raw)
tm.assert_series_equal(result, expected)
def test_all_apply(engine_and_raw):
engine, raw = engine_and_raw
df = (
DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
).set_index("A")
* 2
)
er = df.rolling(window=1)
r = df.rolling(window="1s")
result = r.apply(lambda x: 1, engine=engine, raw=raw)
expected = er.apply(lambda x: 1, engine=engine, raw=raw)
tm.assert_frame_equal(result, expected)
def test_ragged_apply(engine_and_raw):
engine, raw = engine_and_raw
df = DataFrame({"B": range(5)})
df.index = [
Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:05"),
Timestamp("20130101 09:00:06"),
]
f = lambda x: 1
result = df.rolling(window="1s", min_periods=1).apply(f, engine=engine, raw=raw)
expected = df.copy()
expected["B"] = 1.0
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).apply(f, engine=engine, raw=raw)
expected = df.copy()
expected["B"] = 1.0
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).apply(f, engine=engine, raw=raw)
expected = df.copy()
expected["B"] = 1.0
tm.assert_frame_equal(result, expected)
def test_invalid_engine():
with pytest.raises(ValueError, match="engine must be either 'numba' or 'cython'"):
Series(range(1)).rolling(1).apply(lambda x: x, engine="foo")
def test_invalid_engine_kwargs_cython():
with pytest.raises(ValueError, match="cython engine does not accept engine_kwargs"):
Series(range(1)).rolling(1).apply(
lambda x: x, engine="cython", engine_kwargs={"nopython": False}
)
def test_invalid_raw_numba():
with pytest.raises(
ValueError, match="raw must be `True` when using the numba engine"
):
Series(range(1)).rolling(1).apply(lambda x: x, raw=False, engine="numba")
@pytest.mark.parametrize("args_kwargs", [[None, {"par": 10}], [(10,), None]])
def test_rolling_apply_args_kwargs(args_kwargs):
# GH 33433
def numpysum(x, par):
return np.sum(x + par)
df = DataFrame({"gr": [1, 1], "a": [1, 2]})
idx = Index(["gr", "a"])
expected = DataFrame([[11.0, 11.0], [11.0, 12.0]], columns=idx)
result = df.rolling(1).apply(numpysum, args=args_kwargs[0], kwargs=args_kwargs[1])
tm.assert_frame_equal(result, expected)
midx = MultiIndex.from_tuples([(1, 0), (1, 1)], names=["gr", None])
expected = Series([11.0, 12.0], index=midx, name="a")
gb_rolling = df.groupby("gr")["a"].rolling(1)
result = gb_rolling.apply(numpysum, args=args_kwargs[0], kwargs=args_kwargs[1])
tm.assert_series_equal(result, expected)
def test_nans(raw):
obj = Series(np.random.default_rng(2).standard_normal(50))
obj[:10] = np.nan
obj[-10:] = np.nan
result = obj.rolling(50, min_periods=30).apply(f, raw=raw)
tm.assert_almost_equal(result.iloc[-1], np.mean(obj[10:-10]))
# min_periods is working correctly
result = obj.rolling(20, min_periods=15).apply(f, raw=raw)
assert isna(result.iloc[23])
assert not isna(result.iloc[24])
assert not isna(result.iloc[-6])
assert isna(result.iloc[-5])
obj2 = Series(np.random.default_rng(2).standard_normal(20))
result = obj2.rolling(10, min_periods=5).apply(f, raw=raw)
assert isna(result.iloc[3])
assert notna(result.iloc[4])
result0 = obj.rolling(20, min_periods=0).apply(f, raw=raw)
result1 = obj.rolling(20, min_periods=1).apply(f, raw=raw)
tm.assert_almost_equal(result0, result1)
def test_center(raw):
obj = Series(np.random.default_rng(2).standard_normal(50))
obj[:10] = np.nan
obj[-10:] = np.nan
result = obj.rolling(20, min_periods=15, center=True).apply(f, raw=raw)
expected = (
concat([obj, Series([np.nan] * 9)])
.rolling(20, min_periods=15)
.apply(f, raw=raw)
.iloc[9:]
.reset_index(drop=True)
)
tm.assert_series_equal(result, expected)
def test_series(raw, series):
result = series.rolling(50).apply(f, raw=raw)
assert isinstance(result, Series)
tm.assert_almost_equal(result.iloc[-1], np.mean(series[-50:]))
def test_frame(raw, frame):
result = frame.rolling(50).apply(f, raw=raw)
assert isinstance(result, DataFrame)
tm.assert_series_equal(
result.iloc[-1, :],
frame.iloc[-50:, :].apply(np.mean, axis=0, raw=raw),
check_names=False,
)
def test_time_rule_series(raw, series):
win = 25
minp = 10
ser = series[::2].resample("B").mean()
series_result = ser.rolling(window=win, min_periods=minp).apply(f, raw=raw)
last_date = series_result.index[-1]
prev_date = last_date - 24 * offsets.BDay()
trunc_series = series[::2].truncate(prev_date, last_date)
tm.assert_almost_equal(series_result.iloc[-1], np.mean(trunc_series))
def test_time_rule_frame(raw, frame):
win = 25
minp = 10
frm = frame[::2].resample("B").mean()
frame_result = frm.rolling(window=win, min_periods=minp).apply(f, raw=raw)
last_date = frame_result.index[-1]
prev_date = last_date - 24 * offsets.BDay()
trunc_frame = frame[::2].truncate(prev_date, last_date)
tm.assert_series_equal(
frame_result.xs(last_date),
trunc_frame.apply(np.mean, raw=raw),
check_names=False,
)
@pytest.mark.parametrize("minp", [0, 99, 100])
def test_min_periods(raw, series, minp, step):
result = series.rolling(len(series) + 1, min_periods=minp, step=step).apply(
f, raw=raw
)
expected = series.rolling(len(series), min_periods=minp, step=step).apply(
f, raw=raw
)
nan_mask = isna(result)
tm.assert_series_equal(nan_mask, isna(expected))
nan_mask = ~nan_mask
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
def test_center_reindex_series(raw, series):
# shifter index
s = [f"x{x:d}" for x in range(12)]
minp = 10
series_xp = (
series.reindex(list(series.index) + s)
.rolling(window=25, min_periods=minp)
.apply(f, raw=raw)
.shift(-12)
.reindex(series.index)
)
series_rs = series.rolling(window=25, min_periods=minp, center=True).apply(
f, raw=raw
)
tm.assert_series_equal(series_xp, series_rs)
def test_center_reindex_frame(raw):
# shifter index
frame = DataFrame(range(100), index=date_range("2020-01-01", freq="D", periods=100))
s = [f"x{x:d}" for x in range(12)]
minp = 10
frame_xp = (
frame.reindex(list(frame.index) + s)
.rolling(window=25, min_periods=minp)
.apply(f, raw=raw)
.shift(-12)
.reindex(frame.index)
)
frame_rs = frame.rolling(window=25, min_periods=minp, center=True).apply(f, raw=raw)
tm.assert_frame_equal(frame_xp, frame_rs)
def test_axis1(raw):
# GH 45912
df = DataFrame([1, 2])
msg = "Support for axis=1 in DataFrame.rolling is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.rolling(window=1, axis=1).apply(np.sum, raw=raw)
expected = DataFrame([1.0, 2.0])
tm.assert_frame_equal(result, expected)